AICS International Workshop on Data Assimilation RIKEN Advanced institute for computational science, Kobe Japan 2013/02/27

Simultaneous optimization of air-sea exchange coefficients & initial condition around a tropical cyclone with JNoVA

<u>Kosuke Ito</u> JAMSTEC, Japan

Acknowledgements: Takuya Kawabata, Yuuki Honda, Teruyuki Kato, Yoichi Ishikawa, Toshiyuki Awaji, Kazuo Saito and Chun-Chieh Wu

Tropical cyclone (TC) forecast skill in the recent 20 years

(National Hurricane Center website)

Track: Error halved during the past 20 yrs
Intensity: Not significant improvement

For the better TC intensity modeling

- Horizontal Resolution
 [⊿x ~ a few kilometers, at least]
- Data assimilation
 [Optimization of air-sea exchange coefficients]

Significant impact on TC intensity; Highly uncertain

• Model physics

[Coupling to the ocean model; Parameterization]

Max. wind speed in a mature stage (Emanuel, 1986)

$$V_{\max} = \sqrt{\frac{T_s - T_o}{T_o} \frac{C_k}{C_D}} (k_o^* - k_a)$$

- Ck: Heat exchange coefficient (~CE)
 - **CD: Drag coefficient** (Determining the magnitude of friction)

There exist large discrepancies among different methodologies $\Delta(C_k/C_D) \sim 50\%$

Schematic diagram: Optimization of CD and CE (For simplicity, consider an advection-diffusion eqs.)

Forward Model

Adjoint Model

Perfect Model Experiment (Ito et al., 2010)

- Simple coupled atmosphere-ocean model is employed to test the feasibility.
- We compare three experiments starting with wrong CD, CE and initial condition (IC).

NoAsm	No Data assimilation
Asm_NoCoef	IC adjusted
Asm_Coef	CD, CE and IC adjusted

Simple Coupled Model

Atmospheric Model

- Axisymmetric Non-hydrostatic Model [Rotunno and Emanuel, 1987]
- ✓ Warm-rain
 ✓ Smagorinsky Scheme
- ✓ T_{env}, q_{env}: Conditionally Unstable

Oceanic Model

✓ 1-dimensional Mixed Layer Model $\frac{\partial \rho_{\text{sea}}hu}{\partial t} = |\tau| = \rho_{\text{air}}C_D |U|^2$ [Schade & Emanuel 1999] ✓ Coupling: Same as in Emanuel (2004)

Model Setup

✓ <u>Ar:3.75 km</u>, <u>Az:313 m</u>, time step:2 s
 ✓ Vortex_{init}: V_{max}=12 m/s
 ✓ SST_{env}: 30°C(day 0) → 27°C(day 10)
 ✓ Translation speed of TC: 6 m/s

Wind field

Experimental Setup	
Adjoint eqs.	Same as forward eqs. except that processes associated
	with sound wave and microphysics are not included.
Assim. window	4 days (Day 6.0 - Day 10.0)
Obs. variable	Horizontal wind velocity, water vapor mixing ratio, and mixed layer momentum
Obs. Quantity	Every grid within r<100 km, z<5 km (every 12 hour)
Settings of $C_D \& C_E$	[For True] CD: Powell et al.(2003), CE: Arbitrary [For NoAsm] CD, CE: Large & Pond (1981) (V≦30m/s)
Bg. err. cov. mat. B	Prescribed: Variance in time of True run \rightarrow Magnitudes 2D-Fourier analysis of perturbed True runs \rightarrow Scales
Obs. err. cov. mat. O	Prescribed: Diagonal matrix. Magnitudes are 1/20 of diagonal components of B .
(a) Storm-relative data distribution in <i>R</i> -θ plane 90	

Dropsonde obs. project by NOAA/HRD (Montgomery et al., 2006)

Adjusted CD and CE

Optimial estimate: TC intensity

True ~ Asm_Coef > Asm_NoCoef > NoAsm

Application to the operational mesoscale DA system (JNoVA) used in JMA: TC Chaba (2010)

Typhoon Chaba's track

(Digital Typhoon Archives)

Framework of DA experiments

- JMA Nonhydrostatic Variational DA system (JNoVA) used for daily forecasts. ∠x = 5km (outer loop)
 "NoCoef": Optimization of initial condition alone
 "Coof": Optimization of Co. Coord initial condition
 - "Coef": Optimization of CD, CE and initial condition
- Observational Dataset: Same as operational forecast archived at Japan Meteorological Agency
- Period of DA experiments: 21 hours => 7 Cycles (from 03UTC October 28 to 00UTC October 29)

Analysis Dataset

$$(No obs.) \longleftrightarrow (Vole 1) (Vole 2) (Vole 3) (Vole 4) (Vole 5) (Vole 6) (Vole 7) (Vole 2) (Vole 3) (Vole 4) (Vole 5) (Vole 6) (Vole 7) (Vole 7$$

CD and CE: Dependency on wind speed

CD in Coef: Saturated over the wind speed of 24 m/s.
 CE in Coef: Further enhanced (in comparison to NoCoef)

Misfits between model results and observations integrated over the calculation domain

Significantly decreased (up to 22%) in Coef compared with that in NoCoef experiment.

Maximum Wind Speed

JMA Besttrack: Based on satellite and statistical data.
 Differences: |Coef-JMA|=3.6m/s, |NoCoef-JMA|=7.5m/s

Structual Changes in typhoon Chaba

Potential impact on TC track forecast

Simultaneous optimization yields the better track forecast.

Summary

(Ito et al., 2010, SOLA; Ito et al., JMSJ, in minor revision)

- Tropical cyclone (TC) intensity (particularly in a mature stage) largely relies on uncertain parameter CD & CE.
- Simultaneous optimization of CD, CE and initial condition through a 4D-VAR.
- Experiments exhibit the improvements in reproducing the TC intensity, inner-core structure and track.
- Forecast in a decay stage is more challenging.

JNoVA using a coupled atmosphere-ocean model

1-D ocean mixed layer model (Price et al., 1986) is coupled.
For the case of TC Talas (2011), SST decreases by 1-2 K in the right of TC pathway (consistent with the satellite observation).

Initial condition (Ocean)

- •SST: As in the original JNoVA
- SSS, subsurface water property: Climatology (WOA 2009)

Ctrl VS Coupled (8 DA cycles)

- RMSE of Vmax: $2.26m/s \rightarrow 1.72m/s$
- RMSE of Pmin: $4.77hPa \rightarrow 4.67hPa$
- Mean of minimized J: $2431 \rightarrow 2408$

Thank you.