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Promising new tools for the LETKF(1) 
 

1.  Running in Place (Kalnay and Yang, QJ 2010, Yang, Kalnay 
and Hunt, MWR, 2012) 
•  It extracts more information from observations by using them 
more than once. 
•  Useful during spin-up (e.g., hurricanes and tornados). 
•  It uses the “no-cost smoother”, Kalnay et al., Tellus, 2007b. 
•  Typhoon Sinlaku (Yang et al., 2012, 2013) 
•  7-years of Ocean Reanalysis (Penny, 2011, Penny et al., 2012) 
•  Very good results! 
•  Shu-Chih Yang’s talk this afternoon 
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Promising new tools for the LETKF(2) 
 

2.  Effective assimilation of Precipitation (Guo-Yuan Lien, 
Eugenia Kalnay and Takemasa Miyoshi, 2013) 

•  Assimilation of precipitation has generally failed to improve 
forecasts beyond a day. 

•  A new approach deals with non-Gaussianity, and assimilation 
of both zero and non-zero precipitation. The model now 
“remembers” the assimilation, so that that medium range 
forecasts are improved. 

•  Guo-Yuan Lien’s talk tomorrow 
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Promising new tools for the LETKF(3) 
3.  Forecast Sensitivity to Observations and “proactive QC” 

 (with Y Ota, T Miyoshi, J Liu, and J Derber)  
A simpler, more accurate formulation for the Ensemble Forecast 
Sensitivity to Observations (EFSO, Kalnay et al., 2012, Tellus). 
•  Ota et al., 2012 tested it with the NCEP EnSRF-GFS 

operational system using all operational observations. 
•  Allows to identify “bad observations” after 12 or 24hr, and then 

repeat the data assimilation without them: “proactive QC”. 
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Promising new tools for the LETKF(4, 5) 
4. Estimation of surface fluxes as evolving parameters 

 (Kang et al., 2011, 2012) 
•  Ji-Sun Kang’s talk tomorrow 

5. Application of ensemble forecast sensitivity to data 
assimilation (Shu-Chih Yang, E. Kalnay, thanks to T. Enomoto) 

•  We apply the idea of ensemble sensitivity to the spin-up 
problem. 

•  Very promising!! 
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Local Ensemble Transform Kalman Filter ���
(Ott et al, 2004, Hunt et al, 2004, 2007)���

(a square root filter)	


•  Model independent 
(black box) 
•  Obs. assimilated 
simultaneously at each 
grid point 
•  100% parallel 
•  No adjoint needed 
•  4D LETKF extension 
•  Computes the weights 
for the ensemble forecasts 
explicitly 

(Start with initial ensemble) 

LETKF Observation 
operator 

Model 

ensemble  analyses 

ensemble forecasts 

ensemble  
“observations” 

Observations 
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Perform data assimilation in a local volume, choosing observations  

 
 

The state estimate is updated at the 
central grid red dot 

 

Localization based on observations 
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Perform data assimilation in a local volume, choosing observations  

 
 

The state estimate is updated at the 
central grid red dot 

All observations (purple diamonds) 
within the local region are assimilated 

Localization based on observations 

The LETKF algorithm can be described in a single slide! 
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Local Ensemble Transform Kalman Filter (LETKF) 

Forecast step:       
Analysis step: construct 
 
 
 
Locally: Choose for each grid point the observations to be used, and 
compute the local analysis error covariance and perturbations in 
ensemble space: 
  
 
Analysis mean in ensemble space: 
and add to      to get the analysis ensemble in ensemble space.  

The new ensemble analyses in model space are the columns of                
                  . Gathering the grid point analyses forms the new 

global analyses. Note that the the output of the LETKF are analysis 
weights         and perturbation analysis matrices of weights        . These 
weights multiply the ensemble forecasts. 
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No-cost LETKF smoother (   ): apply at tn-1 the same
weights found optimal at tn. It works for 3D- or 4D-LETKF

The no-cost smoother makes possible:
! Quasi Outer Loop (QOL)
! “Running in place” (RIP) for faster spin-up
! Use of future data in reanalysis
! Ability to use longer windows and nonlinear perturbations

tn tn-1 
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No-cost LETKF smoother first 
tested on a QG model: it works… 

“Smoother” 
reanalysis  

LETKF Analysis 
xn
a = xn

f +Xn
fwn

aLETKF analysis  
at time n 

Smoother analysis  
at time n-1 !xn!1

a = xn!1
f +Xn!1

f wn
a

Very simple smoother: apply the final weights at the 
beginning of the window. It allows assimilation of 
future data, and assimilating data more than once.  
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Nonlinearities, “QOL” and “Running in Place” 

Quasi Outer Loop: similar to 4D-Var: use the final weights 
to correct only the mean initial analysis, keeping the 
initial perturbations. Repeat the analysis once or twice. 
It centers the ensemble on a more accurate nonlinear 
solution. 

Lorenz -3 variable model RMS analysis error 
 

   4D-Var   LETKF  LETKF  LETKF 
               +QOL             +RIP 

Window=8 steps  0.31      0.30  0.27    0.27 
Window=25 steps  0.53      0.68  0.47    0.35  
 
“Running in Place” smoothes both the analysis and the 
analysis error covariance and iterates a few times… 
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Steve Penny’s thesis 
defense 

April 15, 2011 

An application of LETKF-RIP to ocean data assimilation 

Data Assimilation of the Global Ocean  
using 4D-LETKF, SODA(OI) and MOM2 

Advisors: E Kalnay, J Carton, K Ide, T Miyoshi, G Chepurin 

Penny (now at UMD/NCEP) implemented the LETKF 
with either IAU or RIP and compared it with SODA (OI) 
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LETKF-RIP B/A 

FREE-RUN 

LETKF-IAU B 

SODA B 
SODA A 

LETKF-IAU A 

RMSD (ºC) (All vertical levels) B: background 
A: analysis 

Global RMS(O-F) of Temperature (oC),  
12-month moving average  

LETKF (with IAU), SODA and LETKF with RIP 

7 years of Ocean Reanalysis  
Temperature  
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LETKF-RIP B/A 

Free-Run 

SODA B 
SODA A 
LETKF-IAU A 

RMSD (psu) (All vertical levels) B: background 
A: analysis 

Global RMS(O-F) of Salinity (psu),  
12-month moving average  

LETKF (with IAU), SODA and LETKF with RIP 

7 years of Ocean Reanalysis 
Salinity 
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Why is LETKF-RIP so much better than SODA 
or LETKF-IAU for the ocean reanalysis? 

•  The ocean observations are too sparse for  a 
standard EnKF, or even OI/3D-Var with a short (5-
day) window. 

•  SODA and LETKF-IAU used a much longer window 
(30 days) in order to hammer the system with the 
available observations. 

•  LETKF-RIP uses a 5-day window but re-uses the 
observations in order to extract more information. 
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Summary for LETKF-RIP (or QOL)  

•  Kalman Filter is optimal for a linear, perfect model. 
•  During spin-up, or when the ensemble perturbations grow 

nonlinearly, EnKF is not optimal, since it does not extract 
enough information from the observations. 

•  The LETKF “no-cost” smoother (or, equivalently, the 4D-
EnSRF) allows LETKF-RIP to use the observations more than 
once, and thus extract much more information. 

•  This shortens the spin-up and produces more accurate 
forecasts with the same observations. 

•  For linear models RIP converges to the same optimal KF 
solution but with spread reduced by ~ 

•  For long windows and nonlinear perturbations, RIP advances 
in smaller steps and approaches the true attractor more 
“softly”.  

N
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(2) Effective Assimilation of Precipitation 
(Guo-Yuan Lien, E. Kalnay and T Miyoshi) 

•  Guo-Yuan’s talk tomorrow 
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G!1 (x ) = 2erf !1 (2x !1)

How do we transform precipitation y to a Gaussian ytransf? 

Start with pdf of 
y=rain at every grid 
point. 
 
 “No rain” is like a 
delta function that we 
cannot transform. 
 
We assign all “no 
rain” to the median 
of the no rain CDF. 
 
We found this works 
as well as more 
complicated 
procedures. 
 
It allows to assimilate 
both rain and no rain. 
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Raobs 

Gaussian, 10 members rain,  
20% error, all variables 

Only Q 

•  Main result: with at least 10 ensemble members raining in order 
to assimilate an obs, updating all variables (including vorticity), 
with Gaussian transform, and rather accurate observations 
(20% errors), the analyses and forecasts are much improved!  

•  Updating only Q is much less effective.  
•  The 5-day forecasts maintain the advantage. 



The NCEP 5-day skill dropout problem 



Ensemble Forecast Sensitivity to Observations 
“Adjoint sensitivity without adjoint” (Liu and K, 2008, Li et al., 2010) 

Here we show a simpler, more accurate formulation  
(Kalnay, Ota, Miyoshi: Tellus, 2012) 

The only difference between         and            is the assimilation of observations at 00hr: 

 

 

  Observation impact on the reduction of forecast error:   

(Adapted from Langland 
and Baker, 2004) 
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Ensemble Forecast Sensitivity to Observations 
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Langland and Baker (2004), Gelaro, solve this with the adjoint: 
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This requires the adjoint of the model       and of the data 
assimilation system      (Langland and Baker, 2004) KT

MT



Ensemble Forecast Sensitivity to Observations 
Langland and Baker (2004): 
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With EnKF we can use the original equation without “adjointing”: 
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This uses the available nonlinear forecast ensemble products. 

Thus, 

Recall that 



Impact of dropsondes on a Typhoon   
(Kunii et al. 2012)	

Estimated observation impact	

TY Sinlaku	

Degrading	

Improving	



Denying negative impact data improves forecast!	

Estimated observation impact	 Typhoon track forecast is 
actually improved!!	

Improved 
forecast	

36-h forecasts	

TY Sinlaku	

Original 
forecast	

Observed
track	



Ota et al. 2013: Applied EFSO to NCEP GFS/
EnSRF using all operational observations. 

Determined regional 24hr “forecast failures” 
• Divide the globe into 30x30o regions 

• Find all cases where the 24hr regional forecast error 
is at least 20% larger than the 36hr forecast error 
verifying at the same time, and 

• where the 24hr forecast has errors at least twice the 
time average. 

• Identify the top observation type that has a negative 
impact on the forecast. 

• Found 7 cases of 24hr forecast skill dropout 



24-hr forecast error correction (Ota et al.) 
- identified 7 cases of large 30ox30o regional errors, 

- rerun the forecasts denying bad obs. 
- the forecast errors were substantially reduced 

- this could be applied to improve the 5-day skill dropouts 

MODIS 
MODIS 



“Proactive” QC: Bad observations can be 
identified by EFSO and withdrawn from the 

data assimilation 

!

After identifying MODIS polar winds producing bad 24 hr 
regional forecasts, the withdrawal of these winds reduced 
the forecast errors by 39%, as projected by EFSO. 



Other applications: Impacts of 
Observing Systems  

Moist Total Energy (J/Kg) Dry Total Energy (J/Kg) 

The EnKF formulation is nonlinear and thus allows computing 
Moist Total Energy and estimate more accurately the impact of 
the channels on the moisture forecast. Adjoint formulation needs 
TLM. 
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Promising new tools for the LETKF(4, 5) 
4. Estimation of surface fluxes as evolving parameters 

 (Kang et al., 2011, 2012) 
•  Kang’s talk tomorrow 

 
5. Application of ensemble forecast sensitivity to data 
assimilation (Shu-Chih Yang, E. Kalnay, thanks to T. Enomoto) 

•  New!!!  
•  Very promising!! 



Ensemble Sensitivity: Application to Data 
Assimilation and the Spin-up Problem 
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Assume we are in a window of the LETKF with an 
ensemble of K members 

xi,t
b = M (xi,t!1

a )

!xi,t
b = xi,t

b ! xt
b "M(!xi,t!1

a )

Since the window is short, 

Define the vectors of analysis and forecast perturbations: 

Xt!1
a = [!x1,t!1

a ,...,!xK ,t!1
a ]; Xt

b = [!x1,t
b ,...,!xK ,t

b ]
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We want to find the linear combination of analysis 
perturbations that will grow fastest:  

!xt!1
a = Xt!1

a p; !xt
b = Xt

bp

with optimal coefficients  p = [pt,1,...., pt,K ]

We can use the equation in Enomoto et al (2007) 
(see derivation in Yang and Kalnay, 2013):  

(Xt!1
aTCIXt!1

aT )!1(Xt
bTCFXt

bT )p = !p
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We tested this with a QG model starting with a random 
ensemble that satisfies the B3D-Var.  
The initial optimal perturbation after 6hr grows into a final 
perturbation after 12 hrs: 

Is this fast growing perturbation related to the background errors? 
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We tested this with a QG model starting with a random 
ensemble that satisfies the B3D-Var.  
The initial optimal perturbation after 6hr grows into a final 
perturbation after 12 hrs: 

Is this fast growing perturbation related to the background errors? 

YES!!! 



Summary and the future 
•  RIP can extract more information from observations and 

accelerate spin-up. Examples: Typhoon Sinlaku and Ocean. 
•   EnKF can be used to assimilate and remember precipitation 

information, using a Gaussian Transform and other ideas. 
•  The Ensemble Forecast Sensitivity to Observations can be 

used to detect observations that give bad regional 6, 12 or 
24hr forecasts. This allows repeating analysis without bad 
observations: “proactive QC” and monitoring. 

•  We can estimate surface fluxes of carbon, heat and moisture 
with the LETKF as evolving parameters. 

•  Ensemble Sensitivity can be used to improve the LETKF 
spinup. 

•  EnKF is a newer, simpler, powerful technology.  
•  More potential not yet exploited:  

–  Estimation and correction of model errors and 
parameters (Ruiz et al, Danforth et al, Kang et al)… 



Comparison of 4D-Var and EnKF 

Bold is the best option 
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