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Estimation of Surface Fluxes of  KIAPS
Carbon, Heat, Moisture and
Momentum from Atmospheric

Data Assimilation
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» Explore the feasibility of estimating surface fluxes
at the model-grid scale by assimilating
atmospheric variables (U, V, T, q, Ps) and the flux
variables simultaneously

— Consider multivariate error covariance in analyzing the
flux variables
— No a-priori information for the fluxes
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2% UMD-Berkeley LETKF-C System
o\ \ <\

B ] Observations Forecast
X |: model state vector U, V.T,q,Ps, C U, V. T, q, Ps, C

XP — (U,V, T, g, Ps, C)

CF |: surface CO, flux
— — LETKF (analysis)

U, V, T, q, Ps, C, CF

= Parameter estimation: state vector augmentation
— Append CF (surface CO, fluxes)
— Update CF as part of the data assimilation process

* Simultaneous analysis of carbon and
meteorological variables

— Multivariate analysis with a localization of the variables
(Kang et al., 2011)

— Update all variables at every six hours
KIAPS
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= [f variables in the state vector are not physically
correlated each other, error covariance between those

variables can introduce a sampling error into the
analysis system
| CF C

CF
C

___________________________________________
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without variable |Ocalizaﬁ0n Background error covariance madtrix with variable localization

=» Zeroing out the background error covariance between

those variables improves the result of the analysis
KIAPS (Kang et al., 2011, JGR)
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= Background uncertainty tends to be underestimated with a limited
ensemble size due to the imperfection of the model and
nonlinearity of the system.
— Underestimation is more serious over the observation-rich area.

=» EnKF needs “inflation”

Multiplicative inflation Additive inflation

Multiply (1.0+a) to the background | Add perturbations to the
variance background/analysis state

* The choice of inflation parameter
o @ for the multiplicative inflation
o Scaling factor for the additive perturbation in additive inflation
= Manual tuning.: very expensive or often infeasible!

= Adaptive multiplicative inflation

— Estimates multiplicative inflation parameter at each grid point at
every analysis step adaptively (Anderson, 2009; Miyoshi, 2012)
KIAPS



(3) Vertical Localization
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= Vertical localization of column mixing CO, observation
from remote sensing (e.g. GOSAT, OCO-2)

— Averaging kernel is nearly uniform in the
vertical, although the forcing term (our S
ultimate estimate) is at the surface |

— We have localized the column CO, data, 200:- .1
updating only lower atmospheric CO, o

r |---- OCO CO, ocean

rather than a full column of CO, 5“0 — SCIAMACHY CO

nlev

Yib = h(X?,k) = Zaks(xib,k)

* Calculating innovation based on the _
averaging kernel 00

(hPa)

Pressure
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(Kang et al., 2012)

KIAPS



ng System Simulation Experiments

= Nature run: assumed true state in the experiments

— SPEEDY-C: the modified version of SPEEDY (Molteni, 2003)
e AGCM with a tracer gas of atmospheric CO, (C)
e Spectral model with T30L7
* Prognostic variables: U, V, T, q, Ps, C
* No diurnal cycle
— “True” CO, fluxes (true CF)
e A constant fossil fuel emission (Andres et al., 1996)
» CASA terrestrial CO, fluxes (Gurney et al., 2004)
* Oceanic CO, fluxes (Takahashi et al., 2002)

= Forecast model

— SPEEDY-C with persistence forecast of surface CO, fluxes (CF)
* CFis updated only by the data assimilation
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" Meteorological variables (U, V, T, q, Ps) |~
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— Conventional data
* U,V, T, q: black dots (every 12 hours)
* Ps: gray boxes (every 6 hours)

= Atmospheric CO, concentrations

— in-situ & flask observations
* Weekly records: black dots (107)
e Hourly records: gray dots (18)

— Satellite data from GOSAT

* GOSAT provides column mixed CO,
information which has a sensitivity near
the surface: gray boxes

* No direct measurement of surface CO,
fluxes

KIAPS

Simulated Observations




.,i Re i& : time series of surface CO, fluxes
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= Advanced inflation methods prevent ensemble from
collapsing over observation rich area

— Additive & adaptive multiplicative inflations help analysis estimate
seasonal change of CF.

= Vertical localization improve the CF estimation over area
where satellite data are dominant

KIAPS



in different seasons

Due to the following

techniques:

1) Localization of variables
(Kang et al. 2011)

2) Advanced inflation
methods (adaptive
multiplicative inflation +
additive inflation)

3) Vertical localization of
column mixing CO, data
(Kang et al. 2012)

we has estimated surface

CO, fluxes evolving in time

successfully!
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= Can we estimate surface moisture/heat fluxes by
assimilating atmospheric moisture/temperature
observations? We can use the same methodology!

= OSSEs
— Nature: SPEEDY (perfect model)

— Forecast model: SPEEDY with persistence forecast of
Sensible/Latent heat fluxes (SHF/LHF)

— Simulated observations: conventional observations of (U, V, T,
g, Ps) and AIRS retrievals of (T, q)

— Analysis: U, V, T, q, Ps + SHF & LHF
= Fully multivariate data assimilation
= Adaptive multiplicative inflation + additive inflation
* |nitial conditions: random (no a-priori information)
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Estimations converge to the true state just dafter
—-240-200-160-120—-80 —40 O 40 80 120 160 200 240 one month!
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fﬁﬁm Can we also estimate wind stress?

= OSSEs
— Nature: SPEEDY

— Forecast model: SPEEDY with persistence forecast of
Sensible/Latent heat fluxes (SHF/LHF) and wind stress
(USTR, VSTR) [ALL_FLUXES]

— Simulated observations: conventional observations of (U,
V, T, q, Ps), AIRS retrievals of (T, g), and ASCAT ocean
surface wind observations

e Observation error of ASCAT: 3.5m/s (not as good as AIRS
data)

e ASCAT covers the global ocean every 12 hours, but little
overlapped with AIRS data distribution

— Analysis: U, V, T, g, Ps + SHF, LHF, USTR, VSTR
" Fully multivariate data assimilation
= |nitial conditions: random (no a-priori information)
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USTR from [ALL_FLUXES]

TRUTH_USTR Initial USTR
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A\ After one month of DA, USTR estimation converges to the true USTR
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, even without a-priori
information (OSSEs)

= With the same methodology, we could estimate surface
heat/moisture fluxes!

=>» After a short spin-up period (~a week), estimation of SHF and
LHF converges very well, under the perfect model of WSTR

= We attempt to estimate wind stress (WSTR) within LETKF
(without computing it from a physical parameterization of
the perfect model) in addition to SHF/LHF estimation

— The analysis system still needs further improvement to avoid a
negative feedback among WSTR, SHF, LHF, and other prognostic
variables due to the imperfect WSTR.

— Addition of ASCAT data gives fairly good estimation of WSTR

KIAPS
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