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Objectives

 Explore the feasibility of estimating surface fluxes 
at the model-grid scale by assimilating 
atmospheric variables (U, V, T, q, Ps) and the flux 
variables simultaneously
– Consider multivariate error covariance in analyzing the 

flux variables
– No a-priori information for the fluxes



UMD-Berkeley LETKF-C System

 Parameter estimation: state vector augmentation
– Append CF (surface CO2 fluxes)
– Update CF as part of the data assimilation process

 Simultaneous analysis of carbon and 
meteorological variables
– Multivariate analysis with a localization of the variables

(Kang et al., 2011)
– Update all variables at every six hours
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(1) Localization of Variables

 If variables in the state vector are not physically 
correlated each other, error covariance between those 
variables can introduce a sampling error into the 
analysis system

 Zeroing out the background error covariance between 
those variables improves the result of the analysis
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(2) Inflation Methods

 Background uncertainty tends to be underestimated with a limited 
ensemble size due to the imperfection of the model and 
nonlinearity of the system. 
– Underestimation is more serious over the observation-rich area.
 EnKF needs “inflation”

Multiplicative inflation Additive inflation
Multiply (1.0+α) to the background 
variance

Add perturbations to the 
background/analysis state

 The choice of inflation parameter
 α for the multiplicative inflation
 Scaling factor for the additive perturbation in additive inflation
 Manual tuning: very expensive or often infeasible!

 Adaptive multiplicative inflation
– Estimates multiplicative inflation parameter at each grid point at 

every analysis step adaptively (Anderson, 2009; Miyoshi, 2012)



(3) Vertical Localization

 Vertical localization of column mixing CO2 observation 
from remote sensing (e.g. GOSAT, OCO-2)
– Averaging kernel is nearly uniform in the
vertical, although the forcing term (our 
ultimate estimate) is at the surface

– We have localized the column CO2 data, 
updating only lower atmospheric CO2
rather than a full column of CO2

• Calculating innovation based on the 
averaging kernel
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(Wang et al., 2009)Forcing is at the surface 
(Kang et al., 2012)



Observing System Simulation Experiments

 Nature run: assumed true state in the experiments
– SPEEDY-C: the modified version of SPEEDY (Molteni, 2003)

• AGCM with a tracer gas of atmospheric CO2 (C)
• Spectral model with T30L7
• Prognostic variables: U, V, T, q, Ps, C 
• No diurnal cycle

– “True” CO2 fluxes (true CF)
• A constant fossil fuel emission (Andres et al., 1996)
• CASA terrestrial CO2 fluxes (Gurney et al., 2004)
• Oceanic CO2 fluxes (Takahashi et al., 2002)

 Forecast model
– SPEEDY-C with persistence forecast of surface CO2 fluxes (CF)

• CF is updated only by the data assimilation



Simulated Observations

 Meteorological variables (U, V, T, q, Ps)
– Conventional data

• U, V, T, q: black dots (every 12 hours)
• Ps: gray boxes (every 6 hours)

 Atmospheric CO2 concentrations
– in-situ & flask observations

• Weekly records: black dots (107) 
• Hourly records: gray dots (18) 

– Satellite data from GOSAT
• GOSAT provides column mixed CO2

information which has a sensitivity near 
the surface: gray boxes

 No direct measurement of surface CO2
fluxes



Results: time series of surface CO2 fluxes

 Advanced inflation methods prevent ensemble from 
collapsing over observation rich area
– Additive & adaptive multiplicative inflations help analysis estimate 

seasonal change of CF.
 Vertical localization improve the CF estimation over area 

where satellite data are dominant

CF over East of North America
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Results: surface CO2 fluxes in different seasons

April

August

January

A: True fluxes B: Analysis
Due to the following 
techniques:
1) Localization of variables 

(Kang et al. 2011)
2) Advanced inflation 

methods (adaptive 
multiplicative inflation + 
additive inflation)

3) Vertical localization of 
column mixing CO2 data
(Kang et al. 2012)

we has estimated surface 
CO2 fluxes evolving in time 
successfully!



How about heat/moisture fluxes?

 Can we estimate surface moisture/heat fluxes by 
assimilating atmospheric moisture/temperature 
observations? We can use the same methodology!

 OSSEs
– Nature: SPEEDY (perfect model)
– Forecast model: SPEEDY with persistence forecast of 

Sensible/Latent heat fluxes (SHF/LHF)
– Simulated observations: conventional observations of (U, V, T, 

q, Ps) and AIRS retrievals of (T, q)
– Analysis: U, V, T, q, Ps + SHF & LHF

 Fully multivariate data assimilation
 Adaptive multiplicative inflation + additive inflation
 Initial conditions: random (no a-priori information)



Results: SHF & LHF (perfect model of WSTR)
True SHF @ end of JAN SHF analysis @ end of JAN

True LHF @ end of JAN LHF analysis @ end of JAN

Estimations converge to the true state just after 
one month! 



Can we also estimate wind stress?

 OSSEs
– Nature: SPEEDY
– Forecast model: SPEEDY with persistence forecast of 

Sensible/Latent heat fluxes (SHF/LHF) and wind stress 
(USTR, VSTR) [ALL_FLUXES]

– Simulated observations: conventional observations of (U, 
V, T, q, Ps), AIRS retrievals of (T, q), and ASCAT ocean 
surface wind observations

• Observation error of ASCAT: 3.5m/s (not as good as AIRS 
data)

• ASCAT covers the global ocean every 12 hours, but little 
overlapped with AIRS data distribution

– Analysis: U, V, T, q, Ps + SHF, LHF, USTR, VSTR
 Fully multivariate data assimilation
 Initial conditions: random (no a-priori information)



Result: USTR from [ALL_FLUXES]

 Initial condition includes 
no a-priori information of 
USTR

 After one month of DA, USTR estimation converges to the true USTR
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Summary and Discussion

 We succeed in estimating surface CO2 fluxes with the 
advanced LETKF-C system, even without a-priori
information (OSSEs)

 With the same methodology, we could estimate surface 
heat/moisture fluxes!
 After a short spin-up period (~a week), estimation of SHF and 
LHF converges very well, under the perfect model of WSTR

 We attempt to estimate wind stress (WSTR) within LETKF 
(without computing it from a physical parameterization of 
the perfect model) in addition to SHF/LHF estimation
– The analysis system still needs further improvement to avoid a 

negative feedback among WSTR, SHF, LHF, and other prognostic 
variables due to the imperfect WSTR.

– Addition of ASCAT data gives fairly good estimation of WSTR
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