Multi-scale Localization in Ensemble-based Data Assimilation

Keiichi Kondo1, 2 and Takemasa Miyoshi3, 4
1: University of Tsukuba
2: Research Fellow of the Japan Society for the Promotion of Science
3: RIKEN AICS
4: University of Maryland
Motivation

- Due to the limited ensemble size, sampling error may be problematic.
- Localization plays an essential role.
 - Distance-dependent localization is applied to error covariance and reduces the sampling errors.

Analysis increments from a single profile observation (20 members)

- Higher resolution models require narrower localization which limits the influence of observations.
Motivated by Buehner (2012), we construct analysis increments as a sum of high- \((h)\) and low- \((l)\) wavenumber components.

\[\delta x = \delta x_h + \delta x_l \]
We apply spatial smoothing to the ensemble perturbations to reduce noise in longer-range covariance.
Larger-scale localization

○ Applying a 1000-km (larger scale) localization.

Full-range (T30) analysis increment

Analysis increment from reduced-resolution (T21) ensemble perturbations

Noisier in distance
Applying a 500-km (smaller scale) localization.

Full-range (T30) analysis increment

Analysis increment from reduced-resolution (T21) ensemble perturbations

More structure in short range
Merging the two scales

Original covariance with 500-km (smaller scale) localization

\[\delta x_h \]

Preserve the smaller-scale structure in short range

Large-scale covariance with 1000-km (larger scale) localization

\[\delta x_l \]

Removing the short-range structure

\[\delta x = \delta x_h + \delta x_l \]
We merge the high (h) and low (l) wavenumber components.

\[\delta x = \delta x_h + \delta x_l \]
Summary of the algorithm

1. Compute the analysis increment regularly
 (with smaller-scale localization)

2. Compute the analysis increment with smoothed ensemble perturbations
 (with larger-scale localization)

3. Compute the analysis increment with smoothed ensemble perturbations
 (with smaller-scale localization)

4. Take the difference between 2 and 3

5. Add 1 and 4
Settings of perfect model experiments

<table>
<thead>
<tr>
<th></th>
<th>CTL(L=500)</th>
<th>CTL(L=1000)</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>SPEEDY, T30L7 (Molteni 2003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observation</td>
<td>Radiosonde-like</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ensemble size</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Localization scale</td>
<td>500 km (small)</td>
<td>1000 km (large)</td>
<td>500 km 1000 km</td>
</tr>
</tbody>
</table>

- Test experiment: Dual Localization LETKF
23-month average global analysis error power spectrum.

○ Successfully reducing the errors at all scales.
General improvements for mid-level U

23-month average RMS errors

- 500-km regular
- 1000-km regular
- 500-1000-km dual

○ Successfully improving analysis RMS errors in the Northern Hemisphere.
Impressive improvements for low-Q

23-month average RMS errors

- **500-km regular**
- **1000-km regular**
- **500-1000-km dual**

○ Greatly improving analysis RMS errors almost everywhere.
Summary

○ Dual-localization LETKF analysis showed promising results.
 • Improvements at almost all scales
 • Improvements almost everywhere for all variables
 • Impressive improvements for humidity

○ Drawback: LETKF computations are tripled.

○ Future plans
 • Improving the algorithm for saving computations.
 • Applying to higher-resolution models
 – Multi-scale considerations are more important with higher resolutions.
Thank you for your attention!
23-month average global analysis error power spectrum.

- 500-km localization standard LETKF
- 1000-km localization standard LETKF
- 500-1000-km dual-localization LETKF

- Successfully reducing the errors slightly.
Regular analysis increments at the full resolution (T30) with two different localization scales:

- **Small scale localization**
- **Large scale localization**

Noisier in distance
Reducing sampling noise in a longer range

- We apply spatial smoothing to the ensemble perturbations to reduce noise in longer-range covariance.

Full-range (T30) analysis increment

Analysis increment from reduced-resolution (T21) ensemble perturbations
Longer-range component

Reduced-resolution (T21) perturbations with **large** scale localization

Reduced-resolution (T21) perturbations with **small** scale localization

Removing the small scale structure