Effective Assimilation of Global Precipitation: Simulation Experiments

Guo-Yuan Lien¹, Eugenia Kalnay¹, and Takemasa Miyoshi² ¹University of Maryland, College Park, Maryland, USA ²RIKEN AICS, Kobe, Japan February 27, 2013

Introduction

- Precipitation has long been one of the most important and useful meteorological observations.
- Many efforts to assimilate precipitation observations have been made (e.g., Tsuyuki 1996; Mesinger et al. 2006).
 - Most of them used nudging / variational methods.
 - Succeeded in forcing the model precipitation to be close to the observed values.
 - However, the model forecasts tend to lose their additional skill after few forecast hours.
- Major difficulties in the current status of precipitation assimilation (Bauer et al. 2011):
 - (1) The linear representation of moist physical processes required for variational data assimilation.
 - (2) The non-Gaussianity of precipitation observations.

Objectives

- Use an ensemble Kalman filter (EnKF) to avoid the problem (1) (linearization of the model).
- Propose and test several changes in the precipitation assimilation process to overcome the <u>problem (2)</u> (non-Gaussianity):
 - Transform the precipitation variable into a Gaussian distribution based on its climatological distribution.
 - Assimilate both positive precipitation and zero precipitation using a new observation selection criterion.
- Observing system simulation experiments (OSSEs) in SPEEDY, a simplified but realistic atmospheric GCM.

Gaussian transformation

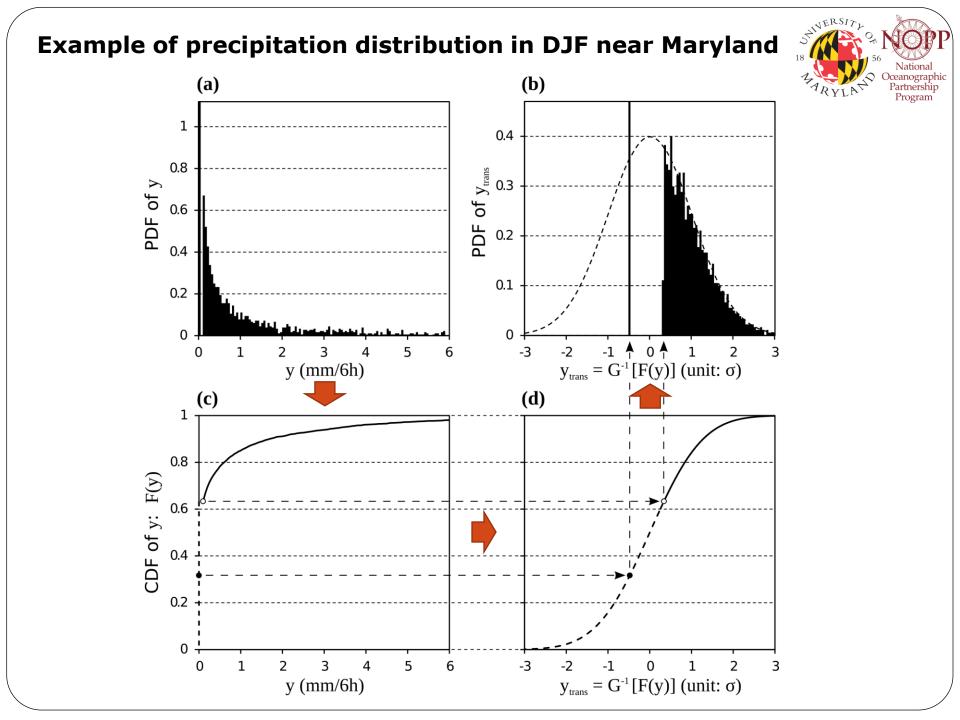
The "Gaussian anamorphosis" (also used by Schöniger et al. 2012 in hydrology):

$$y_{\text{trans}} = G^{-1}[F(y)]$$

- y : Precipitation variable.
- F: Cumulative distribution function (CDF) of precipitation variables based on the model climatology at each grid point and in each season.
- G⁻¹ : Inverse CDF of a normal distribution. In the case with zero mean and standard deviation one:

$$G^{-1}(x) = \sqrt{2} \operatorname{erf}^{-1}(2x - 1)$$

- Precipitation variables contain a large portion of zero values.
 - Zero precipitation values have to be considered in the transformation.
 - A natural choice: assigning the middle value (i.e., *median*) of zeroprecipitation cumulative probability to *F*(0).



Observation selection criteria

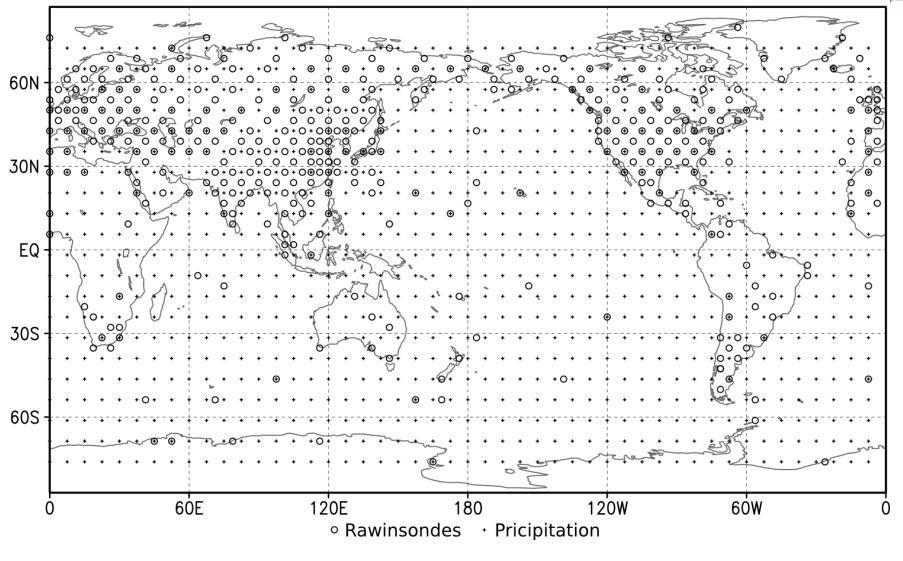
- Observation selection criteria for precipitation assimilation:
 - (i) The "<u>ObsR > 0</u> criterion": only assimilating precipitation when positive precipitation is observed.
 - Discard all zero precipitation observations.
 - (ii) The "<u>10mR</u> criterion": only assimilating precipitation at the location where more than 10 (half of ensemble size) background members have positive precipitation.
 - Allow to assimilate some zero precipitation observations if the background ensemble spread of precipitation is sufficient.

Experimental setup

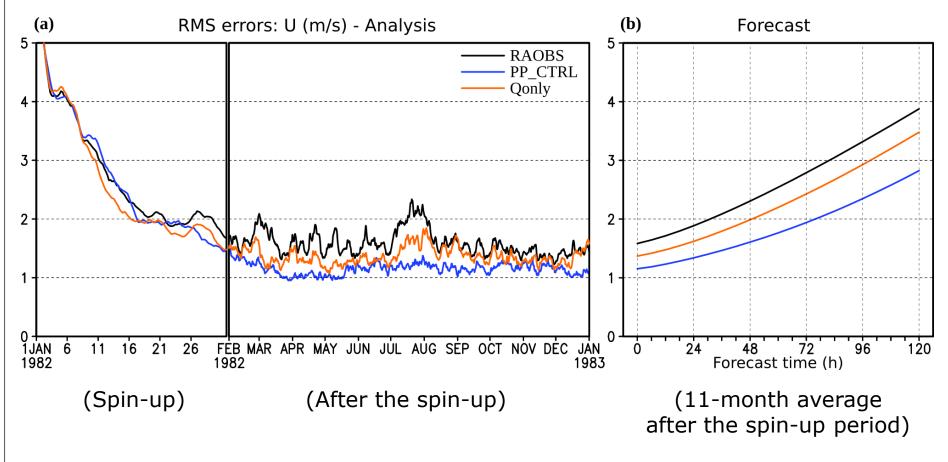
- 1-year OSSE.
- Ensemble size = 20
- Adaptive inflation (Miyoshi 2011)

Experiment	Observations		Gaussian	Criteria for prcp.	Obs. error of
	Raws.	Prcp.	transf.	assimilation	prcp. obs.
RAOBS	х				
PP_CTRL	х	x	x	(ii) 10mR	20%
Qonly	х	X (only updating Q)	x	(ii) 10mR	20%
noGT	х	x		(ii) 10mR	20%
ObsR	х	x	x	(i) ObsR	20%
50%err	х	x	x	(ii) 10mR	50%
50%err_noGT	X	x		(ii) 10mR	50%

Observation distribution



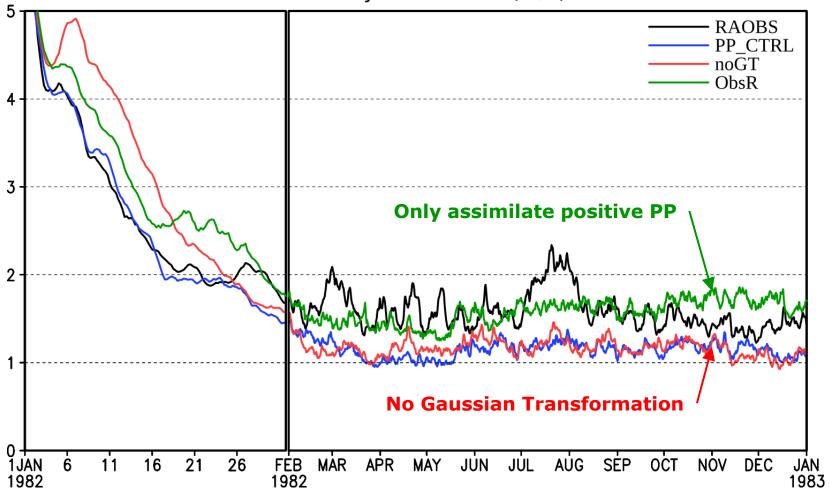
Improvement on analyses and medium range forecasts by precipitation assimilation



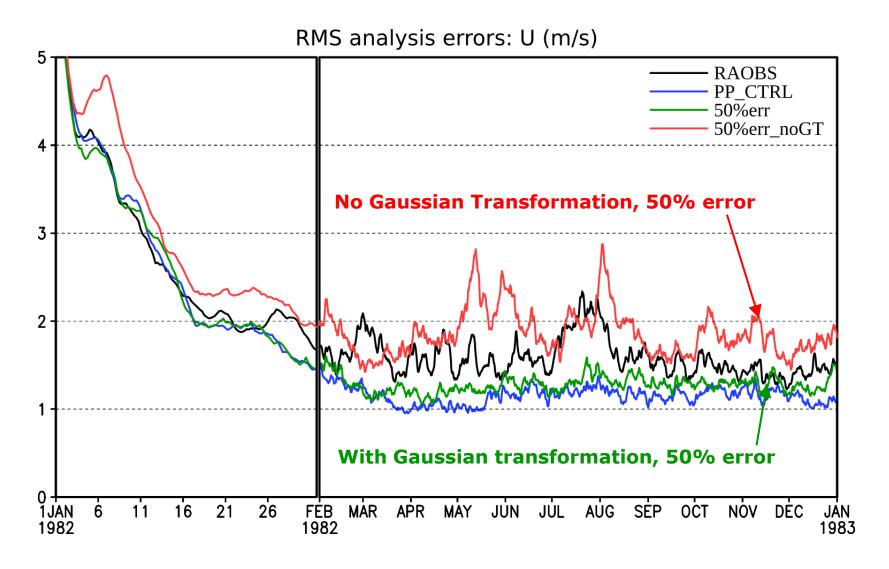
• All other variables (V, T, P_{sfc}) show similar results!

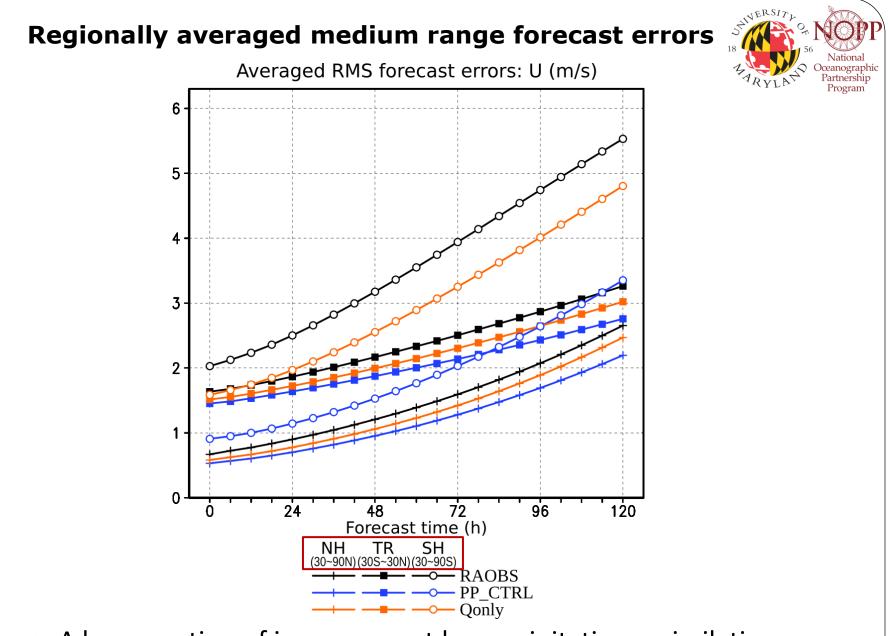
Impact of Gaussian transformation and observation selection criteria

RMS analysis errors: U (m/s)

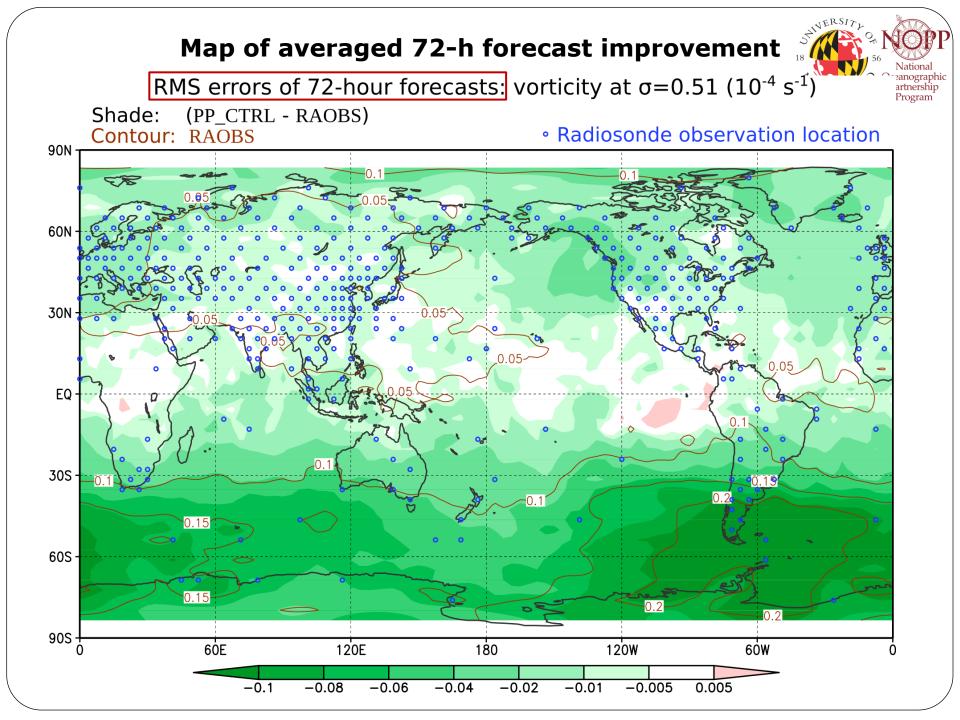


Impact of observation errors





• A large portion of improvement by precipitation assimilation comes from southern extratropical regions.



Conclusion

- Precipitation assimilation using an EnKF and with several changes can significantly improve the analyses and medium range forecasts in the SPEEDY model.
 - In the "Qonly" experiment only modifying the moisture field by precipitation observations, the improvement is much reduced.
- Applying the Gaussian transformation in precipitation assimilation is beneficial, which is even emphasized in the case with large observation errors.
- Allowing to assimilate zero precipitation data with the "10mR criterion" also results in better analyses.
- The experimental setting is too ideal compared to real systems with real precipitation data. We are going to test these ideas in a more realistic system.