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Introduction 

 EnKF and variational methods are approximate 
data assimilation methods for nonlinear systems 
or non-Gaussian PDFs.  

 Theoretical comparison of the two methods for 
nonlinear systems will provide insight into further 
advances of data assimilation.  

 The present study addresses the above issue by 
investigating deterministic predictability and by 
reformulating the variational method. 
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 The initial condition of deterministic prediction is 
usually set to the most probable state (the mode 
of PDF) estimated from data assimilation. 

 In the present study, if the most probable state 

evolves according to the equations of the system, 

it is said that deterministic prediction is possible. 

 The evolution of PDF of the state variables           

is described by the Liouville equation:   
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Evolution of the most probable state 

for a deterministic system: 
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• Prediction equation of the mode of PDF         : 
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Evolution of the most probable state 
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where the error covariance matrix          is defined 
by Gaussian fitting to the PDF at the mode: 
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holds, the first equation is reduced to  

• If the trace condition 

and deterministic prediction is possible.   

• Prediction equation of the error covariance 
matrix       is given by: MP



Cumulus convection,  
chemical reactions, etc. 

Canonical Hamiltonian systems, 
Lorenz-63 and -96 models, etc. 

Nonlinear system 
 not satisfying the 

trace condition 

Nonlinear system 
satisfying the trace 

condition 

Time integration of the 

governing equations 

Evolution of the most 

probable state 
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• Fluid dynamics with Lagrangian variables is 
transformed into a canonical Hamiltonian system. 

• Fluid dynamics with Eulerian variables is 

generally not a canonical Hamiltonian system. 

Hamiltonian fluid dynamics 
• Equation of motion with Hamiltonian            :  
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• Canonical Hamiltonian systems satisfy the trace 
condition due to the Liouville theorem: 



Trace condition 

• Since the trace is invariant under invertible 
linear transformations, the trace condition is 
also invariant.  
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then 

• If fluids are unbounded, it is found from a 
Fourier expansion that the trace condition 
generally holds for Eulerian fluid dynamics.  



• Governing equations with bottom topography     :  
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• Boundary conditions for a multiply-connected 
domain: 
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• It is found from an expansion in the following 
complete orthogonal system            that the trace 
condition holds. 
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Quasi-geostrophic equation 



• Boundary condition: 

• Governing equations:  
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• It is found from a Fourier expansion that the trace 
condition holds for a cuboid domain.  

• For complex domains, calculation in grid space 
may be necessary. 

Boussinesq approximation 

n



• Governing equations with bottom topography     :  
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Shallow-water equations 
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• Boundary condition for a rectangular domain: 

• It is found from a Fourier expansion that the trace 
condition does not hold. The trace depends only 
on divergence at the boundary. 
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• If error correlation between vorticity and 
divergence is negligible, the evolution of the mode 
of vorticity is not directly affected by the trace term. 



• The trace condition does not hold for the shallow-
water equations with lateral boundaries. 

 
• Deterministic prediction of divergent motion with a 

free surface is difficult near lateral boundaries.   

Summary of deterministic 

predictability in fluid dynamics 

• The trace condition holds for the quasi-geostrophic 
equation and the Boussinesq approximation. 

 
• Deterministic prediction of geostrophic motion and 

oceanic circulation is possible, if nonlinearity in 
forcing and dissipation is weak. 



• Since the analysis       is the mode of posterior 
PDF, the background state (prediction)      at the 
next analysis time is the mode of prior PDF. 

• If      is close to the true state, the first two terms of 
the expansion of the logarithm of prior PDF          
around      give a good approximation.    

      ),(
2

1
)(log)(log

31T f

kk

f

kk

f

k

f

kk

f

kk Opp xxxxPxxxx 


Reformulation of variational data 

assimilation 
Assumption: The trace condition holds. 
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Reformulation of variational data 

assimilation – cont’d 
• Cost function: 

The third term may be identified as a penalty term. 

• Analysis error covariance      is defined by 
Gaussian fitting to the posterior PDF at      : 

• The evolution of the error covariance      defined by 
Gaussian fitting to PDF at the mode is given by: 

No approximation except the expansion of prior PDF. 
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Comparison of EnKF and 

variational  methods 

• EnKF vs. 3DVar with flow-dependent   

• EnKF vs. 4DVar with flow-dependent  

- EnKF needs more Gaussian fitting. 

- 4DVar needs no more Gaussian fitting 
with less weight to the prior PDF. 

  Weak non-Gaussianity 

For nonlinear systems that satisfy the trace condition: 

Strong non-Gaussianity 

3DVar 

EnKF 

3DVar 

EnKF Original  

Prior PDF Original  

Prior PDF 
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Ultimate data assimilation methods: 

    - Particle filter with enough ensemble members 
to neglect sampling error, for the mean, 

    - 4DVar with an enough length assimilation 
window to neglect the prior PDF, for the mode.  

• 4DVar with flow-dependent background error is 
suitable for deterministic prediction of a nonlinear 
system that satisfies the trace condition. 

• EnKF is suitable for ensemble prediction of a 
nonlinear system not satisfying the trace condition. 
Further advances are needed for non-Gaussianity. 

Comparison of EnKF and 

variational  methods – cont’d 
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Multi-scale data assimilation 

experiment with LETKF 

Tsuyuki (2012) 

• Lorenz-96 two-scale model: 
36 large-scale variables    , 
360 small-scale variables   . 

• The problem observed 
when precision or density  
of small-scale obs. data is 
not enough is not due to 
sampling error, but due to 
Gaussian assumption. 

X

Y

Analysis error of X (M=10) 



Conclusions 
• Deterministic prediction is possible for fluid motion 

governed by the quasi-geostrophic equation or, 
possibly, by the Boussinesq approximation. 

• Deterministic prediction of divergent motion with a 
free surface is difficult near lateral boundaries.   

• If a nonlinear system satisfies the trace condition, 
variational data assimilation is formulated with 
less approximations. 

• 4DVar with flow-dependent background error is 
suitable for deterministic prediction of a nonlinear 
system that satisfies the trace condition. 



Thank you. 
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• The Liouville theorem also holds for a noncanonical 

Hamiltonian system with the Lie-Poisson bracket:  
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• A couple of fluid equations with Eulerian variables are 

written with the Lie-Poisson bracket satisfying the above 

condition. An example is the 2-dimensional nondivergent 

vorticity equation: 

 ,, H
t








,

2

1 22
rdH

D     .,:, 2
rd

gf
Jgf

D 







  








• The Lie-Poisson bracket is not a necessary condition for 

the Liouville theorem to hold. Hence, Hamiltonian fluid 

dynamics is not of much help for the present purpose. 

Hamiltonian fluid dynamics 
– cont’d 



     We are lucky the weather at 

large scales is predictable by 

deterministic NWP. 


