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• Precipitation has long been an important meteorological 

observations.

• Past studies of precipitation assimilation have been done mostly 

with the nudging or variational systems.

• They are successful during the assimilation (e.g., NARR), but the model 

forgets about the changes soon after the assimilation stops.

• The change in moisture is not an efficient way to update the potential 

vorticity field, which is the “master” dynamical variable that primarily 

determines the evolution of the forecast in NWP models.

Background
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Background
• Assimilation of precipitation is difficult because of:

• the nonlinear precipitation process.

(difficult to create the tangent linear model and adjoint model)

→ Solution: Ensemble Kalman filter (EnKF)

• the non-Gaussianity of the precipitation variable.

(violate the Gaussian error assumption in most of data assimilation 

schemes)

→ Solution: CDF-based Gaussian transformation

• the imperfect precipitation parameterization in numerical models. 

(model errors)

• the unknown errors associated with the precipitation observations. 

(observation errors)

OSSE with a simplified GCM

More challenges with real model and data
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Objectives

• Proposed methods of precipitation assimilation:

• Local ensemble transform Kalman filter (LETKF).

• Cumulative distribution function (CDF)-based transformation of 

precipitation, instead of logarithm transformation.

• For proof of concept, we conducted idealized perfect-model 

experiment with the SPEEDY model.

• Application to the real data assimilation with a realistic model:

• TRMM Multisatellite Precipitation Analysis (TMPA)

• NCEP Global Forecasting System (GFS). 
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Transformation of precipitation

• Most of practical data assimilation schemes for large systems 

assume Gaussian error distributions for both observations and 

the model backgrounds

• However, it is unavoidable that we need to use observations with a 

certain non-Gaussianity.

• Variable transformation is a cheaper solution to alleviate the problem.

• Transformation methods used in our study:

• No transformation (NT)

• Logarithm transformation (Log)

(Lopez 2011, 2013; others)

• Gaussian transformation (GT)

(Schöniger et al. 2012; Lien at al. 2013)



7 / 42

Transformation of precipitation
• Logarithm transformation:

•  𝑦 = ln 𝑦 + 𝛼

• Gaussian transformation (Gaussian anamorphosis):

𝐹𝐺  𝑦 = 𝐹 𝑦 or     𝑦 = 𝐹𝐺−1
𝐹 𝑦; location, period of year

• 𝐹() : The cumulative distribution function (CDF) of the 

original variable

• 𝐹𝐺() : The CDF of a standard normal distribution.

[ 𝐹𝐺−1
() : The inverse function of 𝐹𝐺() ]

• The CDF of precipitation variables is empirically determined based on the 

model/observation climatology at each grid point and period of year.  

It requires a long period of model/observation data.

• Two methods for transform the zero precipitation:

GTcz and GTbz. → Will be introduced later.

• It results in a Gaussian climatology, but not necessarily the 

Gaussian error distribution required in the data assimilation.

→ Will be verified later.
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Example of Gaussian precipitation transformation

PDF

CDF

Original variable Transformed variable

The climatological
median of zero
(GTcz) method
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Original
variable

Transformed
variable

Example of Gaussian precipitation transformation
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Climatological distribution

Illustration of error distribution and zero precipitation transform
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Climatological distribution

Error distribution in the background ensemble

Illustration of error distribution and zero precipitation transform
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No rain
probability

= 62%

Error distribution in the background ensemble

Background
ensemble

with positive rain

No rain
ensemble members

= 25%

𝑷𝐜

𝑷𝐛

 𝑦trace : Boundary of rain/no rain

Illustration of error distribution and zero precipitation transform
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Error distribution in the background ensemble

Background
ensemble

with positive rain

𝑷𝐜

𝑷𝐛

 𝑦trace : Boundary of rain/no rain

Transformed zero rain
based on the

climatological distribution
[GTcz method]

Illustration of error distribution and zero precipitation transform
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Error distribution in the background ensemble

Background
ensemble

with positive rain

𝑷𝐜

𝑷𝐛

 𝑦trace : Boundary of rain/no rain

Transformed zero rain
based on the

climatological distribution
[GTcz method]

Transformed zero rain
based on the error distribution
derived from the background
ensemble with positive rain

[GTbz method]

Illustration of error distribution and zero precipitation transform
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OSSEs with the SPEEDY model

Experiment
Observations Transf

(precip)

Selection criteria

(precip)

Obs error

(precip)Raobs Precip

Raobs v

GTcz v v GTcz 10mR 20%

GTbz v v GTbz 10mR 20%

Qonly v v (only updating Q) GTcz 10mR 20%

ObsR v v GTcz ObsR 20%

 1-year identical-twin observing system simulation experiment (OSSE).

 Ensemble size = 20

 Adaptive inflation (Miyoshi 2011)

 Observation selection criteria for precipitation assimilation:
 The traditional “ObsR criterion”: only assimilating precipitation at the location 

with observed positive precipitation (> 0.1 mm/6h).
 The “10mR criterion”: only assimilating precipitation at the location where more 

than 10 background members have positive precipitation.



17 / 42

Observation distribution
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Average analysis and forecast errors

(Spin-up) (After the spin-up) (11-month average      
after the spin-up period)

RAOBS:      Assimilate rawinsonde observations
GTcz:          Assimilate rawinsondes + uniformly distributed global precipitation using GTcz
GTbz:         Assimilate rawinsondes + uniformly distributed global precipitation using GTbz
Qonly:        Same as GTcz, but only update moisture field by precipitation assimilation

(Other variables show similar results)
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Impact of observation selection criteria
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Summary of the SPEEDY OSSEs

• Precipitation assimilation using an EnKF and with

• Gaussian transformation

• “10mR” criterion

can significantly improve the analyses and medium range 

forecasts in the SPEEDY model.

• The EnKF can effectively update all model variables by the 

precipitation assimilation.
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GFS-LETKF assimilation of TMPA data

• More realistic experimental design:

Assimilation of the TRMM Multi-satellite Precipitation Analysis (TMPA) into 

a low-resolution NCEP GFS model.

Three parts of the study:

• Part I:  Statistics of the precipitation variable in both the GFS 

model and the TMPA observations.

• Part II:  Real data assimilation experiments.

• Part III:  Ensemble forecast sensitivity to observations (EFSO) for 

precipitation.
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Part I: Statistics of model/observed precipitation

• Model: NCEP GFS model at a T62 resolution

• Observations: TMPA version 7 (3B42), upscaled to the Gaussian grid used by 

the T62 GFS model using an areal conservative remapping.

• Variables: precipitation rate or 6-h accumulated precipitation.

• Sample: 2001-2010 (10 year) period.
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No transformation Log transformation

Positive bias 

Joint probability distribution diagrams

T62 GFS model background
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• The 6-h accumulated precipitation is used.
• Only positive precipitation is shown in all figures.
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Instantaneous precip rate 6-h accumulated precipitation

(Figures plotted with logarithm transformation)

Instantaneous vs. accumulated precipitation
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Distribution after the Gaussian transformation
Global Land Ocean
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• Correlation between the model backgrounds and the observations at each 

grid point.

• Blue contours: Corr = 0.35, will be used to define the QC.

Correlation maps
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Gaussianity statistics
• Measure of (non-)Gaussianity:

• 𝜒2 =  𝑘=1
𝐾

𝑦𝑘−𝑦𝑘
expected 2

𝜎2 (sorted 𝑦𝑘)

• 𝑦𝑘 : samples in the ensemble.

• 𝑦𝑘
expected

: samples taken from a Gaussian distribution 

with the mean and variance same as the ensemble.

• 𝜒2 values are computed for each precipitation observation, and then 

averaged.

• Sample: Year 2008 every 30 hours (skip every 4 of 5 cycles).
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Average 𝜒2 wrt. precipitating members

GTczLOGNT

0 32 (all)

Precipitating members in the background

16

GTbz

Relative improvement to NT
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Average 𝜒2 maps

NT Log

GTcz GTbz
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Problems and strategies in the real data case 
(applicable to the large-scale, non-convective precipitation)

• Inconsistent probability distribution between model and 

observation climatology (amplitude-dependent biases).

→ Apply Gaussian transformation to model/observation 

precipitation separately to correct the biases.

• Timing errors in the forecast precipitation.

→ Use the 6-h accumulated amount.

• Wrong precipitation parameterization at some regions.

→ Don’t use observations in those areas.
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Part II: GFS-LETKF assimilation of TMPA data

• RAOBS:   Conventional radiosonde only

• NT:          Raobs + TMPA without transformation

• Log:  Raobs + TMPA with the Log transformation

• GTcz:       Raobs + TMPA with the GTcz transformation

• GTbz:  Raobs + TMPA with the GTbz transformation

• General settings:

• Horizontal localization:  500 km

• Vertical localization:  0.4 ln(P)

• Settings for TMPA assimilation:

• 24mR: require >= 24 members (out of 32) are precipitating (> 0.06 mm/6h)

• Corr0.35: Assimilated only at where Corr[GFSpp, TMPApp] > 0.35

• No selection rule based on observed values

• Horizontal localization:  350 km

• Vertical localization:  0.4 ln(P), from 850 hPa

• Verification period: One-year (2008) cycling run after 1 month spin-up.

• Verified against the ECMWF ERA interim reanalysis.
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Average RMSE/bias vs. forecast time

Global results      Solid lines: RMS errors     Dashed lines: Biases

NT

GTcz and GTbz

Raobs

Log

 NT gives very bad results.

 Log transformation leads to marginal results.
 Good for moisture, but bad for temperature.

 GTcz and GTbz are almost the same, both leading to clear positive impacts.
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Part III: Ensemble forecast sensitivity of observations (EFSO)

• Estimate the 

forecast error reductions of 

any subset of observations.

• Economical alternative to OSEs.

• Thanks for the code and 

guidance from Daisuke Hotta

and Yoichiro Ota.
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EFSO for precipitation
• Since all good and bad precipitation observations are assimilated, we intend 

not to carry out cycling assimilation in order to prevent the degrading trend 

of the analysis.

• Evaluation forecast time (EFT): 6 hours

• EFSO values are computed for each precipitation observations, then 

averaged in terms of various factors.

• Sample: Year 2008 every 30 hours (skip every 4 of 5 cycles).
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EFSO of TMPA precipitation
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Average 
forecast 

error 
reduction

Positive 
impact rates

Average EFSO maps
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EFSO wrt. precipitating members

0 32 (all)
Precipitating members in the background

16

50%
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EFSO using different transformation methods
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Reconsideration of the precipitation QC

Correlation between
the model and observations

EFSO: Average observation impacts

Average (non-)Gaussianity (𝝌𝟐) EFSO: Positive impact rates
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Summary
• We successfully obtained positive impacts by assimilating precipitation, in 

both idealized OSSEs and a realistic model and observations, using the LETKF

and the Gaussian transformation.

• The impacts are seen in both analyses and 5-day forecasts.

• Gaussian transformation is beneficial to the precipitation assimilation:

• Applying Gaussian transformation to model/observation precipitation separately 

can correct the bias and increase the correlation between these two quantities.

• Gaussian transformation based on the climatology does produce more Gaussian 

background error distribution of precipitation.

• Statistical characteristics of the precipitation variable can give us useful hints 

in the real precipitation data assimilation.

• The model error is a very important issue in the real precipitation data 

assimilation.

• We demonstrated how to use the EFSO to efficiently analyze the 

effectiveness of a new observing system.
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