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Need for prediction is all pervasive

• Each of us one time or other have looked into our 
crystal ball to check/verify how tomorrow looks

• Many of what we do in life is driven by prediction 
of some sort

• Electric Power companies want to plan on 
generation depending on the predicted high 
temperature for tomorrow

• Federal Reserve Board adjusts the short-term 
interest rates based on the prediction of 
inflationary tendencies
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Basis for prediction

Prediction
based on

Data Models Assimilated 
models
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Prediction based on historical data: 
Examples

• Election results based on polling data
• Price of an old house/used car based on 

“appraisal”
• Stock prices based on recent observations
• Prediction of “Tsunami” by “sea gypsies” based 

on the observed recession of the waters edge –
There was a nice piece by Mr. Bob Simon in CBS 
60 minutes program in mid August 05

• Astrology and Fortune telling
• This list goes on with many more examples



5

Why data based prediction?

• Data/Observations represent the true state of the 
system being observed

• Permits inductive generalization
• This is how progress in Science is made
• Early astronomers used this line of reasoning to 

create a wealth of knowledge
• Earth rotates around the sun in elliptic orbits
• Discovery of the law of gravitation
• Discovery of various models for the atom
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Need for modeling data

• Trade-off: need large amount of data to have 
better accuracy in prediction but it gets to be more 
difficult to understand the inherent patterns in the 
data especially when the data set is large

• Motivates to create a model that can 
generate/replicate the “essence” observations 
modulo noise

• Example: Kepler derived the three laws that bears 
his name which was the basis for Newton to create 
the laws of gravitation
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Nature and types of models:
a classification

Types of
models

Empirical or 
based on
physics

Static or 
dynamic

Deterministic 
or

stochastic
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Empirical models:
a classification

• Time series modeling –ARIMA models in 
Econometrics, Signal processing

• Regression models in Statistics
• Data Mining: principal component analysis
• Supervised learning using neural networks
• Clustering (unsupervised) to classify data 

into two various sub-classes
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Physics based models

• Inverse square law of gravitation
• A class of baratropic models that describes 

the motion of a hurricane: PDE that 
describes the vortex - a cork in a moving 
fluid

• Motion of the planets in the solar systems 
(ODE)
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Examples

• Inverse square law: deterministic/static
• Barotropic model: deterministic/dynamic
• Statistical regression: stochastic/static
• Time series: stochastic/dynamic
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Instantiation of models using  data 
assimilation

• Static models have unknown parameters
• Dynamic models have unknown 

initial/boundary conditions/parameters
• Estimate the unknowns of the model using 

well known data assimilation schemes
• Generate predictions using the assimilated 

models
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From prediction to predictability

• Some events are perfectly predictable - solar 
eclipse 

• Some events are predictable only for a limited 
horizon – winter weather is better than summer 
weather

• An astronomer can predict where the moons of 
Jupiter will be at 11.00pm this evening but has no 
idea where his teenage son/daughter will be.
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Model based predictability analysis

Deterministic
Systems

Stochastic
Systems

Predictability
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Predictability of deterministic 
Systems

• From the time of Newton (1643-1727) to 1890 it 
was believed that deterministic dynamical systems 
are perfectly predictable in the sense that the 
states of a system can be computed for infinitely 
long time

• This belief rests on the fact if a system can be 
solved in closed form, then its solution is known 
for all times.
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Dynamical systems
• Linear systems
• Behavior of linear 

system is completely 
catalogued

• Stable vs.unstable
• Stable: periodic or 

asymptotically stable
• Linear systems are 

perfectly predictable 
for all times

• Nonlinear systems
• Only a very small fraction 

of nonlinear systems can 
be solved in closed form 
and hence perfectly 
predictable

• For a vast majority of 
nonlinear systems 
numerical solution is the 
only recourse 

• The question of 
predictability arise only 
with this latter class of 
systems
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Limited predictability: The first 
encounter

• Poincaré between 1893-1912 for the first 
time encountered the possibility of limited
predictability while trying to numerically 
solve a simple 3-body problem for which 
closed form solution was ( and is still) not 
known
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3-body problem

• Poincaré for the first time found out that 
very small changes in the initial 
conditions resulted in large changes in 
trajectories during the numerical 
integration

• This result sowed the seeds for the 
development of the theory of deterministic 
chaos as we know it today  
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Qualitative Theory of differential 
equations

• Deals with the question: can we predict the long 
term qualitative behavior of the solution of 
dynamical systems without actually solving the 
equations?

• Lyapunov theory of stability paved the 
foundations for this line of attack

• It provides sufficient conditions for stability by 
analyzing the behavior of certain functional –
called a Lyapunov function,  along the trajectory 
of the system
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Qualitative Theory 
• The period 1900-1960 witnessed great advances in 

the development of the qualitative theory that laid 
the foundations of the stability theory as we know 
it today

• V.V. Nemytskii and V.V. Stepanov (1960) 
Qualitative Theory of Differential Equations, 
Princeton University Press, 523 pages

• E. Lorenz  (1963) “Deterministic non-periodic 
flows”, Journal of Atmospheric Sciences, Vol 
20, 130-141. 

• This paper by Lorenz extensively uses the 
concepts and results from the above book
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Early 1950’s
• The question of meteorological predictability came to the 

forefront around 1950’s - thanks to the new emerging 
digital computer era, when large scale numerical weather 
prediction became feasible

• P.D. Thompson(1957)”Uncertainty of initial state as a 
factor in the predictability of large scale atmospheric flow 
patterns”, Tellus, Vol 9, 275-295. 

• This paper by Thompson is the first in recent times to 
analyze the limited predictability due to uncertainties in the 
initial field using a stochastic framework
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Foundations of limited 
predictability 

• Ed Lorenz in 1963 revived the interest in this area 
by the (accidental) invention of the new 
phenomenon of deterministic chaos while 
numerically integrating a system of nonlinear 
equations –known known as the Lorenz’s model

• Chaos is defined as the sensitivity to small 
changes in initial conditions as suspected by 
Poincare some seven decades ago

• Systems that exhibit sensitivity to initial 
conditions by definition have only limited 
predictability
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Special aspects of nonlinear 
systems

• Like linear systems nonlinear systems can be 
asymptotically stable, periodic and unstable

• Unlike linear systems, the specialty however is 
that a nonlinear system can be unstable and yet be 
bounded- known as chaos

• Chaos is like an angry energetic tiger in a cage –
bounded and yet not predictable
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Estimation of rate of growth of small 
errors: basic idea

)( xfx 
Let

be the given model 
Let

Xk+1= M (Xk)

be the discrete time version of the model
Then 

ek+1= DM(xk) ek

gives the dynamics of first order perturbation
(TLM) where DM(xk) is the Jacobian of M at xk
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Let for t ≥ s ≥ 0. Then the state transition matrix is given by

DM(t:s) = DM(xt)DM(xt-1)……..DM(xs)

The error at time (k+1) is related that at time 0 is then given by
et+1= DM(t:0) e0

The Rayleigh coefficient has been used to analyze the rate of
growth of errors:

rt+1= (et+1
Tet+1) / (e0

Te0)

= (e0
TDM

T(t:s)DM(t:s)e0) / (e0
Te0)

The eigen values of DM
T(t:s)DM(t:s) which are called the 

singular values of  DM (t:s) determine the rate of growth in 
finite time (t-s)
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Asymptotic rate of growth of small errors

Renormalization strategy:

λ =  lim       lim       (1/N) Σ log (ek+1
Tek+1/ek

Tek)
N→∞   e0→ 0

This number is called the leading Lyapunov exponent
where the summation is from 0 to N

It denotes the average of the logarithm of the 
amplification along the trajectory 

A good reference for the computation of Lyapunov exponents is:

T. S. Parker and L.O. Chua (1989) Practical Numerical
Algorithms for Chaotic Systems, Springer Verlag 
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Typical values of Lyapunov 
exponent

Steady state Attractor set Lyapunov 
exponent

Equilibrium 
point

Point λ< 0

Periodic orbit cycle λ= 0

Chaotic Fractal structure λ > 0
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If λ is positive, then small errors grow at the rate give by

eλt

The predictability limit is 

tp = 1/λ

Which is the time required for the initial errors to grow
by a factor e which is analogous to the notion of time constant

Note: Only for simplicity in presentation we have assumed that
there is only one positive exponent. In practice there could 
be more. In such a case we take the sum of all the positive
exponents. In such a case the predictability limit would be 
even lesser than when there is only one positive exponent 
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E. N. Lorenz (2005) “ A look at some of the details of he growth
of initial uncertainties”, Tellus, Vol 57A, 1-11

In a recent paper

provides a very good discussion of predictability of yet another 
related 3 dimensional system by computing the three 
Lyapunov exponents

Note: The number of Lyapunov exponents is equal to the 
dimension of the system

For classic Lorenz system of 1963 the three exponents are 
given by λ1 = 0.9, λ2 = 0, and λ3 = -12.8
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Summary

• Limited time (deterministic) predictability is 
an exclusive property of nonlinear 
deterministic systems for which there is no 
known closed form solution and whose 
properties have to be understood only using 
extensive computer simulations

• The values of the Lyapunov exponent is a 
clear indicator of predictability limit
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Stochastic differential equations 
(SDE) : Ito equation

Let

be the given dynamics with x0 is the initial condition, the
forcing dwt is the standard Brownian motion or Wiener process
and           is the parameter and          is the state dependent 

covariance matrix
State vector is x =(x1,x2,,…xn),    f=(f1,f2,…fn),
w=(w1,w2,…wn)  

tttt dwxdtXfdX )(),(  

 )(X
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Markov diffusion process

• Solution of the SDE is a Markov process
• This provides a natural extension of ODE to SDE
• Fokker-Planck (1900’s) Kolmogorov (1930’s) -

derived equations for the evolution of the 
probability density of Markov process

• Ito calculus  provides the frame work for the 
analysis of functionals of this class of Markov 
process
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Source of randomness in models

Randomness can enter in three ways:
• Initial/boundary condition – otherwise 

deterministic system
• Random forcing
• Random coefficients
• Combinations of these three sources
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Predictability in stochastic 
systems

• Given the pdf of the sources of randomness – initial 
condition or the random forcing or of parameters, drive the 
dynamical equations for the evolution of the PDF  Pt(Xt) of 
the state X(t)

• Given any subset B of the model space, then we can 
compute the probability that Xt belongs to the given subset 
B

• The subset B could denote the normal course of events or 
extreme events, etc

• Predictability of a stochastic system is completely solved 
in principle
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Random initial conditions

• Let P0(X0) be the PDF of the initial state Xo

of the model: 
• Once a random realization of IC is picked, the 

system acts as though it is a purely a 
deterministic system

• The PDF Pt(Xt) of Xt is the given by the 
classical Liouville’s equation:

0)( x
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Randomness only in the initial 
condition: Liouville’s equation

• Let Pt(Xt) be the probability density of the state 
xt at time t. The Pt is given by the solution of the 
Liouville’s equation which is a (parabolic) 
partial differential equation where Po(xo) is the 
given initial distribution

0/][/   iti it xPftP
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• For a derivation of Liouville’s equation 
refer to the following sources:

• T. L. Saaty (1967) Modern nonlinear
equations, McGraw Hill, Chapter 8

• T.T. Snoog ( 1973) Random differential
equations in Science and Engineering, 
Academic Press
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Random IC and random forcing: 
Kolmogorov forward or Fokker-

Planck equation

P0 is the initial condition

jitji
T

ji

it
i

it
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xPftP
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• For a derivation of Kolmogorov’s forward 
and backward equations refer to the 
following sources:

• A. H. Jazwinski (1970) Stochastic Process
and Filtering, Academic Press
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Relation to Liouville’s equation

• Kolmogorov’s forward equation reduces to 
Liouville’s equation if there is no random forcing 
term: when the coefficient             of dwt is zero

• Notice the natural nesting of the results
• For methods for solving Kolmogorov’s equations 

refer to:
H. Risken (1984) The Fokker-Planck Equation: 
methods of solutions and applications, Springer 
Verlag series in Synergetics, Vol 18, 454 pages

)( x
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Effect of data assimilation on 
predictability in stochastic models

• The evolution of the probability density of the 
state of the stochastic dynamic system with data 
assimilation called Stratonovich-Kushner-Zakai 
(S-K-Z) equation was first derived in the non-
linear filtering literature

• Normalized version of this equation was first 
derived by S-K in the early 1960’s and the 
unnormalized version by Z in the late 1960’s
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S-K-Z equation

tttt dwxdtXfdX )(),(  

ttt dvdtxhdz  )(

: Model

: Observation 

dwt and dvt two uncorrelated Wiener processes

dPt = -∑i {∂[fiPt]/∂t}dt 

+ ½∑i,j∂2 {[σ(x)σT(x)]ĳPt}/∂xi∂xj dt

+ Pt [dzt – E(h(xt)dt]T Σ-1 [h(xt) – E(h(xt)]

Σ is the covariance of observation noise
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Nesting of equations:

• S-K-Z is a stochastic PDF (random initial 
conditions, random forcing and random 
observations)

• When there is no observation, S-K-Z 
reduces to Kolmogorov’s forward equation

• When there is no random forcing, it further 
reduces to Liouville’s equation



43

Reference to S-K-Z equations

H.J. Kushner (1962) “On the differential equations 
satisfied by the conditional densities of Markov 
processes with applications”, SIAM Journal on
Control and Optimization, Vol 2, 106-119

• M. Zakai (1969) “On the optimal filtering of 
diffusion processes”,  Zeitschrift fur
Wahrschienlickeitstheorie und Verwanddte
Gebiete, Vol 11, 230-243

• G. Kallianpur (1980) Stochastic Filtering 
Theory, Academic Press
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R. E. Kalman (1960) “ A new approach to linear filtering
and prediction”, Transactions of the American Society of
Mechanical Engineeting, Journal of Basic Engineering,
Series –D, Vol 82, 35-45
R. S. Bucy and P.D. Joseph (1968) Filtering for stochastic processes
with applications to guidance, Interscience publications
R.S. Bucy (1994) Lectures on discrete filtering, Springer Verlag

N. Wiener (1949) Extrapolation, Interpolation and Smoothing
of Stationary Time Series with Engineering Applications, Wiley
(originally published as a classified document in Feb,1942)

A.N. Kolmogorov (1941) Interpolation, extrapolation of
Stationary Random sequences, Bulletin of Academy  of
Sciences, USSR, Series on Mathematics, Vol 5
(Translation by RAND corporation Memorandum RM
-3090 April, 1962)
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• Solution of S-K-Z equation:

• J. F. Bennaton (1985) “Discrete time 
Galerkin approximations to nonlinear 
filtering”, Journal of Mathematical 
Analysis and Applications, Vol 110, 364-
383
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Approximate moment dynamics
• Since S-K-Z type equations are not easy to solve, 

great attention has been given to quantifying the 
evolution of the first K-moments of the random 
state x(t)

• This line of argument was pursued by Thompson 
(1957), non-linear filtering literature 

• Extended Kalman filters (1960), Epstein 
(1960’s) – stochastic dynamics

• A major challenge facing this approach is the 
classical moment closure problem
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Reference for moment closure

• A. H. Jazwinski (1970) Stochastic Process
and Filtering Theory, Academic Press

• E. S. Epstein (1969) Stochastic Dynamic
Prediction, Tellus, Vol XXI, 739-759
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Summary

• Thanks to the developments in nonlinear 
filtering theory, predictability of stochastic 
dynamic system has been solved in 
principle. The challenge is to solve the 
S-K-Z equations
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Conclusion

• Determination of predictability limit of 
large scale (such as those that arise in 
meteorology) deterministic and stochastic 
dynamical systems provides some of the 
most demanding computational problems
of our time
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Interest in predictability is not limited to meteorology

Clive W. J. Granger and O. Morgenstern (1970) Predictability of
Stock Market Prices, MIT Press

J.Lewis, S. Lakshmivarahan and S. k. Dhall (2006) Dynamic 
Data Assimilation: a least squares approach, Cambridge 
University Press ( Chapters 31 & 32 are on predictability)

A. Cutler (1983) Justice and predictability, Macmillan
(Punishment in crime deterrence)

H. H. Stevenson (1998) Do lunch or be lunch; the power of 
Predictability in creating your own future, Harvard Business
School Press, Boston, Mass (Business forecasting)
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