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Part I-1:  
Proactive QC 

 based on  EFSO  
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Motivation:  
forecast skill dropout problem 

• Forecast skills of major NWP centers are very 
high on average. 

• However, they occasionally suffer from abrupt 
“drops” (forecast skill dropouts, forecast busts). 

• Recent studies (e.g. Kumar et al. 2009) have 
shown that they are caused by assimilation of 
flawed observations.  

•  Need to improve Quality Control (QC) so that 
flawed obs can be detected and dropped. 
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However…. 
Operational NWP assimilates millions of observations from 
dozens of different diverse sources. 
 How can we detect the observations that degrade the forecast? 
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Pictures from JMA website unless otherwise annotated 

Coverage maps of 

observations operationally 

assimilated by JMA’s 

global DA system 



EFSO: Ensemble Forecast Sensitivity 
to Observations 
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• Inspired by the FSO adjoint method of 
Langland and Baker (2004) 

• Kalnay et. al (2012): improved, 
simpler formulation for EnKF. 

• Ota et al. (2013) implemented the 
new EFSO into the NCEP’s operational 
GFS system 

O-B of ens. mean 
analysis spread in obs. space 

forecast ptbs. Reduction of forecast error 
by the assimilation of obs. 

EFSO enables us to estimate how much each observation 
improved/degraded forecast 



Proactive QC: Find the obs. that make the 6hr 
forecast worse using EFSO, then reject them 

Algorithm: 

Suppose we wish to identify and delete “flawed” obs. at 
00h.  

① Run regular DA cycle from -06h to 00h. 

② Run regular DA cycle from  00h to 06h. 

③ Detect “regional dropouts” using the information 
available from ① and ②. 

④ Perform 6-hour EFSO to identify flawed obs at 00h. 

⑤ If flawed obs are identified, repeat 00h analysis 
without using the detected flawed obs. 
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Are 6 hours long enough 
to capture forecast impacts? 
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Lead-Time: 6 hrs. Lead-Time: 12 hrs. Lead-Time: 24 hrs. 

Average net observation impact for each observation type 

EFSO average results are not very sensitive to the choice 
of evaluation lead time. 

 



Are 6 hours long enough 
to capture forecast impacts? 
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Lead-Time: 6 hrs. Lead-Time: 24 hrs. 

MODIS winds near the North Pole on Feb 06 18UTC, 2012 

Red: negative impact    Blue: positive impact 
 

EFSO results are not very sensitive to the choice of 
evaluation lead time, even for individual cases. 

  6 hours are enough to detect flawed observations! 



How many of the good/bad obs should we reject? 
Does the rejection actually improve forecast? 
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Units: J kg-1 

lead time: 6 hrs. 

MODIS 

 Improve Degrade  

EFSO impact from 
 each MODIS wind observation 

Net EFSO Impact by obs. types 
measured with moist total energy norm 

Units: J kg-1 

positive impact 

negative impact 

How many bad MODIS winds should we 
drop?   
• All of them? 
• The ones with negative impact? 
• Only the worst ones? 

Distribution of the impact in one region 
Drop all MODIS winds 

Drop all negative 



How many of the good/bad obs should we reject? 
Does the rejection actually improve forecast? 
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Relative 24-hr fcst. improvement:= (ef
beforeQC – ef

afterQC )/ ef
beforeQC   x 100 [%] 

 

Data selection based on 6-hour EFSO 
 

delete all MODIS winds delete all negative impact 

0% 

-50% 

50% 
Improved 

Degraded 

• Rejection of observations based on 6-hr impact improves 24-hr forecast ! 

• Best results obtained by rejecting all negatively impacting obs. 



Data denial experiments: Summary of 20 cases 
local maximal improvement/degradation 

 and  improvement averaged over a hemisphere 

Denying all neg obs (within the 
region of 6-hour dropouts):  

• Hemispheric-scale 
forecast error reduced 
in 18 out of 20 cases. 

• Local improvement over 
30% in 7 cases. 

• Improvement continues 
after 24hrs. 
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Key questions answered 

• Are 6 hours long enough for detecting flawed 
observations? 
•  Yes. 6-hr EFSO is equally capable of detecting flawed 

obs. as 24-hr EFSO is. 

• What is the best criterion for rejection of observations? 
•  Best results by rejecting all negatives (allneg) of the 

identified flawed-type inside the identified dropout 
region. 

• Does rejection of those observations really improve 
analysis and forecast? 
•  Yes, with >30% local improvement in 7 out of 20 cases. 

Improvement continues after 24hrs. 
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Operational feasibility: Can we wait 6 hours? 
 We don’t have to wait! 

•  We can exploit time lag between early analysis (GFS) 
and final analysis (GDAS)  (suggested by Dr. John 
Derber)   
– c.f. backup slide for detail 

 

• The change in analysis by the rejection of a subset of 
observations can be cheaply approximated by  

 

 

• No need to repeat costly analysis! 
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Part I-2:  
Ensemble Forecast Sensitivity 

 to R matrix (EFSR) 
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Motivation 

• Data Assimilation combines information from 
background and observations with an “optimal 
weight” which depends on the background- and 
observation- error covariances B and R. 

• In EnKF, B (=Pb) is dynamically estimated, but R is 
still an external parameter. 

– Truth is unknown.  True R is also unknown. 

– R is specified empirically and subjectively. 
 

•  We need a systematic method for tuning R. 
16 



EFSR Formulation 

• Daescu and Langland (2013) proposed an 
adjoint-based formulation of forecast 
sensitivity to R matrix. 

• We can formulate an ensemble version based 
on EFSO by Kalnay et al. (2012) : 

• It tells us whether the forecast will be improved or 
degraded by perturbing R.  

 We can optimize R. 
17 







EFSR for GFS / GSI-LETKF hybrid 

Radiosonde   

MODIS wind    

AMSU-A    

Aircraft   

• Aircraft, Radiosonde and AMSU-A: large positive sensitivity 

• MODIS wind : negative sensitivity 

•  Tuning experiment:  
• Aircraft, Radiosonde and AMSU-A:  reduce  R by 0.9 

• MODIS wind: increase R by 1.1 
20 

R is too large 
( should reduce R)  

Units: J kg-1 



Tuning Experiment: Result 
EFSO before/after tuning of R 

Radiosonde 

MODIS wind 

Aircraft   

AMSU-A  
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Aircraft, Radiosonde, AMSU-A:   
• significant improvement  of 

EFSO-impact  
(as expected) 

 
MODIS wind :  
• No improvement in EFSO 

(interpretation given in the extra slides) 

 Units: J kg-1 



Summary for EFSR 

• EFSR gives information on whether we should 
increase/reduce prescribed R. 

• Tuning of R based on this diagnostics improves 
the EFSO. 
 

•  EFSR can be used to systematically optimize R. 

22 



Part II-1:  
 

EFSO at JMA 



EFSO implementation at JMA (by Yoichiro Ota) 

• DA system: hybrid LETKF/4D-Var coupled with JMA GSM 
– Resolution:  (outer) TL959L100 ; (inner and ensemble) T319L100 

– Window: 6 hours (analysis time +/- 3 hours) 

– B weights: 0.85 for static, 0.25 for ensemble 

– Member size: 50 

– Localization scales (e-folding):  

• LETKF:   Horizontal: 400km, Vertical: 0.4 scale heights 

• 4D-Var: Horizontal: 800km, Vertical: 0.8 scale heights 

– Covariance Inflation: Adaptive inflation of Miyoshi (2011) 

– LETKF part initially coded by Dr. T. Miyoshi; maintained and updated by Y. Ota and T. Kadowaki. 

• EFSO: 
– Lead-times investigated: FT=0,6,12,24 

– Localization scales: same as LEKTF 

• advection: “moving localization scheme” of Ota et al.(2013) with scaling factor of  0.5 for horizontal wind. 

– Verification: high-resolution analysis from 4D-Var 

– Error norm: KE, Dry TE and Moist TE 

 

• Period: Jul. 10, 2013, 06UTC – Jul. 15, 2013, 18UTC (5days, 20cases) 
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net EFSO  contribution from each observation type  
(target=globe; norm=moist total energy) 
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EFT: 0hrs 

EFT:12hrs 

EFT: 6hrs 

EFT:24hrs 

Aircraft RAOB SYNOP AMSU-A 
AMVs 



net EFSO  contribution from each observation type  
(target=globe; norm=moist total energy) 

 • Overall, the results are 
consistent with other centers: 
– at FT=24, contributions from 

radiances and conventional 
data are comparable. 

– AMSU-A, Radiosonde SYNOP 
and Aircraft are the top 
contributors to fcst err 
reduction. 

• However, contributions from 
hyperspectral sounders (AIRS, 
IASI) are modest compared to 
ECMWF or NCEP. 

• (important) 6-hour EFSO is 
surprisingly consistent with 
24-hour EFSO! 
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EFT: 6hrs 

EFT:24hrs 

Aircraft RAOB SYNOP AMSU-A 
AMVs 



• So far, everything seems working well. 

– EFSO estimation consistent with other FSO studies 

– Plausible relative contributions from different 
observation types 

• However,…. 
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Estimated and actual forecast error reduction 

• EFSO successfully reproduces 
temporal variation of forecast 
error reductions (correlation 
coefficient as high as ~ 0.8), 
but 

• Only ~ 20 % of the amplitude 
explained by EFSO. 
– In contrast to  > 100% 

(overestimation)  for  NCEP’s 
EnKF (Ota et al. 2013) 
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 EFSO Δ𝑒2 =
1

2
𝐞𝑡|0
𝑓T
𝐂𝐞𝑡|0

𝑓
−
1

2
𝐞𝑡|−6
𝑓T

𝐂𝐞𝑡|−6
𝑓

 

NCEP, FT=24 (from Ota et al. 2013) 

Δ𝑒2 

 EFSO 

JMA, FT=24 



A possible reason for impact underestimation 

• EFSO implemented for JMA’s LETKF 
underestimates forecast error reduction, 
whereas, for NCEP’s EnKF, EFSO overestimates 
the actual impact. 

• Why? 

• Bug?    not found. 

• Possible reason: forecast error not well 
covered by the space spanned by the forecast 
ensemble  
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A possible reason for impact underestimation 
(cont’d) 

• EFSO formulation: 
Δ𝑒𝑓−𝑔 ≈  

1

𝐾−1
𝐝𝑇𝐑−1 𝜌 ∘ 𝐘𝑎 𝐗𝑓

𝑇
𝐂(𝐞𝑡|0

𝑓
+𝐞𝑡|−6

𝑓
)  

 

• In evaluating 

𝐗𝑓
𝑇
𝐂(𝐞𝑡|0

𝑓
+𝐞𝑡|−6

𝑓
) = 𝐂1/2𝐗𝑓

𝑇
[𝐂

1
2(𝐞𝑡|0

𝑓
+𝐞𝑡|−6

𝑓
)] =: 𝐗 𝑓

𝑇
𝐞  

the portion of 𝐞   that lies in the nullspace of 𝐗 𝑓
𝑇

 does not 

contribute to 𝐗 𝑓
𝑇
𝐞  , namely:  

• Let  

𝐞  = 𝐞  span + 𝐞  null, 𝐞  span ∈ span 𝐗 𝑓 , 𝐞  null ∈ null 𝐗 𝑓   

then 

𝐗 𝑓
𝑇
𝐞 = 𝐗 𝑓

𝑇
𝐞  span + 𝐞  null = 𝐗 𝑓

𝑇
𝐞  span 
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• Is this really the reason why we had the impact 

underestimation? 

 Perform diagnostics: 

• For each local patch,  

– Decompose 𝐞   into 𝐞  span and 𝐞  null. 

– Compute  the “explained fraction” 
𝐞  span

2

𝐞  2 . 

– Compare this with the impact underestimation 
 EFSO

Δ𝑒2
. 
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A possible reason for impact underestimation 
(cont’d) 



Diagnosed “explained fraction” 
𝐞  span

2

𝐞  2  

Horizontal distribution 

(near tropopause level) 

• Fcst err well-captured by ensemble over 
the SH ocean, but not over the land. 

 Perhaps related to observation density: 
– Data-sparse area: analysis (verification) 

and forecast both close to model’s free-
run  𝐞𝑡|0

𝑓
 similar to Bred Vector  

covered well by 𝐗𝑓 

Vertical Profile 
 (global average) 
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• Errors in moisture difficult to capture by 
the ensemble. 

-+-  Kinetic 

-x-  Dry 

-*-  Moist  

Very good agreement between 

 
𝐞  span

2

𝐞  2  and  
 EFSO

Δ𝑒2
 ! (both ~ 20%) 



EFSO at JMA: Summary 
• EFSO is successfully implemented on JMA’s global DA system, both 

stand-alone LETKF and LETKF/4D-Var hybrid. 

• Plausible impacts from different types of obs. that are consistent 
with the literature. 

• However, EFSO considerably underestimates the actual forecast 
error reduction Δ𝑒𝑓−𝑔. 

• Diagnostics that decomposes the fcst err to spanned- and null- 
spaces of the fcst ensemble 𝐗𝑓 suggests that the underestimate is 
caused because significant portion of fcst err lies in the null-space 
of 𝐗𝑓. 

• The diagnostics exposes the lack of the ensemble size (currently 
only 50). 

–  further corroborated by DFS diagnostics (Part II-2) 
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Part II-2:  
 

Degrees of Freedom for Signals 
(DFS) 



Motivation 
• How can we quantify the “value” of each observation? 
• One possible quantification:  

– an observation is valuable if it improves the forecast. 

•  FSO/EFSO 
 

• Another perspective (inspired from information 
theory): 
– An observation is valuable if it enhances our “knowledge” 

about the true state of the atmosphere. 
– Our “knowledge” is enhanced if the uncertainty of the 

state estimate is reduced by assimilating the observation. 
–  Degrees of Freedom for Signal (DFS, or information 

content). 
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What is DFS? 
• Defined as the trace tr 𝐒  of  the “influence matrix” 𝐒 = 𝐇𝐊 𝐓 =

𝛛𝐲𝐚

𝛛𝐲𝐨
 

 
• Shown to behave similarly to Shannon entropy reduction under loose 

conditions:  

  tr 𝐒 ≈  𝐻 𝐱|𝐱𝐛 − 𝐻 𝐱 𝐱𝐛, 𝐲𝐨  × const. 
 

• Two ways to interpret: 
1. Analysis sensitivity to observations measured in obs space. 
2. The amount of information that the analysis extracted from observations. 

 
Simple illustrative examples: 
- Forecast-Forecast cycle: analysis is always the same as the background. 

- 𝐲𝐚 ≡ 𝐲𝐛  𝐒 is null, DFS=tr(S) = 0 (0% information from obs.) 

-  Direct Insertion: background is completely replaced by the obs. 
- 𝐲𝐚 ≡ 𝐲𝐨  𝐒 is identity, DFS = tr(S) = #obs 
- DFS per obs  = 1 (100% information comes from obs. ) 
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• First introduced to NWP by Cardinali et al. (2004) 

• Popular diagnostics for variational DA systems. 

– Routinely monitored by several NWP centers (e.g. ECMWF, Météo-
France) 

• Liu et al. (2009) derived a simple method to compute DFS for EnKF: 

𝐒 =
𝛛𝐲𝐚

𝛛𝐲𝐨
= 𝐇𝐊 𝐓 = 𝐑−𝟏𝐇𝐀𝐇𝐓 ≈

𝟏

𝐊 − 𝟏
𝐑−𝟏 𝐘𝐚 𝐘𝐚 𝐓 

• Verified in Liu et al. (2009) with a simple AGCM (SPEEDY) in an 
“identical-twin” scenario, but 

• Up to present, not yet applied to operational Ensemble DA with real 
observations. 
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Ensemble-based DFS diagnostics at JMA 
Experimental set-up 

• DA system: hybrid LETKF/4D-Var coupled with JMA GSM 
– Resolution:  (outer) TL959L100 ; (inner and ensemble) T319L100 

– Window: 6 hours (analysis time +/- 3 hours) 

– B weights: 0.85 for static, 0.25 for ensemble 

– Member size: 50 

– Localization scales (e-folding):  

• LETKF:   Horizontal: 400km, Vertical: 0.4 scale heights 

• 4D-Var: Horizontal: 800km, Vertical: 0.8 scale heights 

– Covariance Inflation: Adaptive inflation of Miyoshi (2011) 

• DFS estimation Algorithms:  

– Liu et al. (2009)   
𝟏

𝐊−𝟏
tr(𝐑−𝟏 𝐘𝐚 𝐘𝐚 𝐓) 

–  also tried the method of Lupu et al. (2011)  as a double check: 

• tr 𝐇𝐊 = tr 𝐑−1𝔼 𝐝b
a 𝐝a

o T  with the expectation evaluated as the 

average over a period and samples, assuming ergodicity and homogeneity 
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identical to EFSO 

in Part II-1 



Ensemble-based DFS diagnostics at JMA 
Results: DFS per obs 

LETKF within JMA hybrid DA 

• Reasonable agreement between the two methods (at least for conventional obs). 

• Shockingly small observational impact: 

– for JMA only about 1% of information comes from obs., 

– whereas it is about 20% for ECMWF 4D-Var(Cardinali, 2013; ECMWF lecture notes) 
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Global average:  

1.58% 0.68% 

Satellite radiances 

Conventional 



Ensemble-based DFS diagnostics at JMA 
Results: DFS per obs 

LETKF within JMA hybrid DA 
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Global average:  

1.58% 0.68% 

Satellite radiances 

Conventional 

• DFS particularly small for dense observations, satellite radiances in particular 
(except AMSU-A and CSR*). 
* CSR: Clear Sky Radiances measured by infrared imagers on geostationary satellites  (MTSAT, 
GOES and Meteosat) 



Ensemble-based DFS for NCEP GFS hybrid GSI 
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conventional 

Satellite 

Radiance 

hyperspectral 

sounders 

EnSRF LETKF • To discern if the “very 
small DFS problem” is 
merely an idiosyncrasy of 
JMA, we computed DFS 
for NCEP’s lower-
resolution version (from 
Part I) of GFS/GSI hybrid 
DA as well. 

• Results: DFS is very small 
for NCEP’s system as 
well. 

 

•  “Small DFS problem” 
possibly universal to all 
EnKF systems. 



Why DFS so small for LETKF? 
• Our Answer: not enough ensemble size. 

• We can show, for a local analysis in LETKF, that: 

  tr 𝐒loc = tr 𝐊loc
𝐓 𝐇loc

𝐓 = tr 𝐇loc𝐊loc ≤ 𝐾 − 1   

• i.e., DFS is bounded from above by the degrees of freedom of the 
background ensemble. See extra-slide for proof. 

• The number of obs. locally assimilated 𝑝loc is ∼ 𝑂 103 , much larger than 
the member size 𝐾 = 50. 

• Suppose, for convenience, that each obs. assimilated locally has 
comparable DFS, and the obs. density can be assumed homogeneous. 

• Then, we can assume that (𝑺loc) 𝑖𝑖 ∼
𝐾−1

𝑝loc
 , which gives:  

tr(𝑺global) =  (𝑺loc) 𝑖𝑖𝑖  ∼ 𝑝global ×
𝐾−1

𝑝loc
  

 →  DFS per obs=
tr(𝑺global)

𝑝global
∼  

𝐾−1

𝑝loc
 , which, for our system, is  

49

4,000
∼ O(1%) 
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Implications 
• We have seen that, for an EnKF with ensemble size much smaller 

than the number of the locally assimilated observations, DFS is 
inevitably bounded from above by the member size. 

• This means that such a system cannot fully extract information from 
observations. 

• We believe this fact has a lot of important implications, e.g.: 

– why covariance inflation is necessary, 

– what the localization scale should be, given the ensemble size 
and observation density, 

– how, in serial assimilation, the order of assimilating 
observations affects the accuracy of the analysis, 

– how dense observations should be thinned,    …etc. 
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Implication on covariance inflation 

• If the ensemble size is insufficient, DFS=tr(𝐑−𝟏𝐇𝐀𝐇𝐓) is 
underestimated. 

•  The analysis error covariance 𝐀 is also underestimated. 

•  Need for covariance inflation. 

 

• Traditionally, nonlinearity and model errors are considered to be 
the source of necessity for covariance inflation. 

– From this aspect, it is 𝐁 rather than 𝐀 that is underestimated. 

– This is true for Extended Kalman Filter. 

• The inherent underestimation of DFS could be another mechanism 
that requires covariance inflation for EnKF. 

• If so, diagnostics of DFS could give some guidance on how to inflate 
covariance.  

 
44 



Implication on covariance localization 

• Traditionally, it is believed that localization is necessary to filter out spurious 
correlations in Pb due to sampling errors. 

• From this perspective, observation density/distribution does not come into play. 

 

• The fact that DFS is bounded by the member size provides another criterion for 
optimality of localization: 

– Let {𝜆𝑖} be the eigenvalues of 𝐑−
1

2𝐇𝐁
1

2 =
𝟏

K−1
𝐑−

𝟏

𝟐𝐘𝐛 . Then, 

–  DFS =  
𝜆𝑖

1+𝜆𝑖
𝑖   (see the extra-slide) 

•   DFS will not be underestimated if 𝐾-th largest eigenvalue λ𝐾 is negligibly small. 

• This gives an criterion for the optimal member size 𝐾 given the observation 
network and background error covariance. 

• Inversely, given the member size 𝐾, we can choose localization scale so that DFS is 
not artificially bounded. For this, we require that the observations within the 
localized area are few enough such that 𝜆𝑖 ≪ 1 for some 𝑖 < 𝐾. 
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Implication on order of obs. assimilation in serial EnKF 

• Given that the total DFS is bounded by the ensemble size, it would make 
sense to assimilate the observation with the largest DFS first. 

• In fact, Dr. Jeff Whitaker showed at ISDA 2015 that, in serial EnSRF,  the 
following procedure improves the analysis: 

– assimilating observations from those with the smallest 𝜌 ≔
HAHT

HBHT to those 

with the largest, 

– assigning larger localization scale to obs. with smaller 𝜌. 

• It is easy to see 𝜌 = 
HAHT

HBHT =
H I−KH BHT

HBHT = 1 − HK =1-DFS, i.e., Dr. Jeff 

Whitaker’s successful method is equivalent to: 

– assimilating observations from largest DFS to those with smallest, 

– assigning a larger localization scale to obs. with larger DFS 

•  DFS argument could provide this method with theoretical justification. 
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Implication for observation thinning 

• Related to the previous argument, in a 
situation where thinning of observations is 
necessary (e.g., very dense observation such 
as satellite hyperspectral sounding, radar data, 
etc.), it would make sense to assimilate only 
the observations with largest DFS. 
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Summary of DFS diagnostics 

• Ensemble based DFS estimation of Liu et al. 
(2009) is implemented for the first time 
(perhaps) to a quasi-operational DA system 
with real data. 

• It was found that DFS is critically bounded 
from above by the member size. 

• The above result entails a lot of implications 
for possible improvements to EnKF 
methodology. 
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Last comment…. 

• Our diagnostics, both EFSO and DFS, strongly 
indicates importance of larger members. 

 

• RIKEN/AICS DA team is leading the world in 
the area of ensemble DA with massively many  
members. Your experience/insight will be 
invaluable for us! 

 

• We would like to collaborate with RIKEN DA 
team, especially from this aspect! 
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Thank you very 

much! 



Backup slides for Part I 



FT=0 FT=6 

FT=12 FT=24 

 Percentage of positively-contributing observations 
(target=globe; norm=moist total energy) 



• At FT=24, only slightly more than 50% of the 
observations contribute to improve forecast (as 
pointed out by many FSO studies in the literature). 

• Percentage of “helpful” observations increases for 
shorter evaluation lead-time. 

•  Consistent with Hotta (2014, PhD. Dissertation). 
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More applications of EFSO 

(1) Collaboration with instrument/retrieval developers: 
• EFSO can  be used to build a database of flawed 

observations along with their relevant metadata. 
•  Providing such database to instrument/retrieval 

developers would help them identify/fix their problems. 
 

(2) Acceleration of development for assimilation of new 
observing systems: 
• Current OSE-based approach: 

– Impact from new obs is obscured by the presence of many obs 
that are already assimilated. 

–  Difficult to extract statistically significant signals. 
– EFSO-based data selection will enable efficient determination 

of an optimal way to assimilate new observing systems. 
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Tuning Experiment: Result 
EFSO before/after tuning of R 

Radiosonde 

MODIS wind 

Aircraft   

  Why no improvement in MODIS? 
• MODIS had “flawed” obs. along with “helpful” obs.  

• The “flawed” obs. might have resulted in incorrect estimation of EFSR. 

AMSU-A  
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• Aircraft, Radiosonde, AMSU-A:   
• significant improvement  of 

EFSO-impact  
(as expected) 

 
• MODIS wind :  

• No improvement in EFSO 
(contrary to expectation) 
 

Units: J kg-1 



Excluding cases where 
MODIS wind had negative impact 
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Radiosonde  

   MODIS wind    

AMSU-A 

 Aircraft   

• MODIS wind exhibited 
several negatively-impacting 
cases. 

• Exclude negative cases 

•   EFSR for MODIS becomes 
neutral 

•  Consistent with the result 
of tuning experiment 

 

Lesson:   
• Before performing 

EFSR, we should 
remove “bad” obs. 

Excluding “flawed” 
MODIS case 

Including “flawed” 
MODIS case 

Units: J kg-1 Units: J kg-1 

Positive Impact 

Negative Impact 



Implementation to the real operational system 
(1) Can we wait for 6 hours? 

Idea: Exploit the time lag between “early analysis” 
and  “cycle (final) analysis” 

 (suggested by Dr. John Derber, 2013) 
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Cycle 
anal. 

00 UTC 

Cycle 
anal. 

06 UTC 

Cycle 
anal. 

12 UTC 

Cycle 
anal. 

18 UTC 

Early 
anal. 

00 UTC 

Early 
anal. 

12 UTC 

Early 
anal. 

18 UTC 

Time 

Early 
anal. 

06 UTC 

cycle (final) analysis: maintains analysis-forecast cycle 
early analysis: provides initial condition for extended forecast 



Implementation to the real operational system 
(1) we don’t need to wait 6 hours! 
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Cycle 
anal. 

00 UTC 

Cycle 
anal. 

06 UTC 

Cycle 
anal. 

12 UTC 

Cycle 
anal. 

18 UTC 

Early 
anal. 

00 UTC 

Early 
anal. 

06 UTC 

Early 
anal. 

12 UTC 

Early 
anal. 

18 UTC 

P
Q
C 

P
Q
C 

Time 

Idea: Exploit the time lag between “early analysis” 
and  “cycle (final) analysis” 

 (suggested by Dr. John Derber, 2013) 

cycle (final) analysis: maintains analysis-forecast cycle 
early analysis: provides initial condition for extended forecast 



Backup slides for Part II 



Decomposition of fcst error 
 into column- and null- space of fcst ptbs 

• Fix a grid and consider a local patch that would be used if an observation was located at the grid point in 

question. In the derivation below, all vectors/matrices are assumed to be restricted to this local patch. 

• In EnKF, the sum of each column of 𝐗𝑓 is zero, so rank(𝐗𝑓)=𝐾 − 1: 

span 𝐗 𝑓 = span 𝐗 𝑓
1
, ⋯ , 𝐗 𝑓

𝐾−1
, 𝐗 𝑓

𝐾
= span 𝐗 𝑓

1
, ⋯ , 𝐗 𝑓

𝐾−1
  

In light of this, we now denote by 𝐗 𝑓 the first 𝐾 − 1 columns of the original 𝐗 𝑓. 

• Now, suppose that 𝐞  ≔ 𝐂
1

2(𝐞𝑡|0
𝑓
+𝐞𝑡|−6

𝑓
) can be decomposed as  

• 𝐞  = 𝐞  span + 𝐞  null, 𝐞  span =  𝛼𝑘 𝐗 𝑓
𝒌
=𝑲−𝟏

𝒌=𝟏 𝐗 𝑓𝛂, 

   𝛂 = 𝛼1, ⋯ 𝛼𝐾−1 𝑇  

 Multiplying by 𝐂1/2𝐗𝑓
𝑇
=:𝐗 𝑓

𝑇
from left,  𝐞  null by definition vanishes, giving: 

𝐗 𝑓
𝑇
𝐞  = 𝐗 𝑓

𝑇
𝐗 𝑓𝛂 + 𝐞  null = 𝐗 𝑓

𝑇
𝐗 𝑓𝛂 

∴ 𝛂 = 𝐗 𝑓
𝑇
𝐗 𝑓

−1
𝐗 𝑓

𝑇
𝐞   

• Once 𝛂 is determined, we can obtain 𝐞  span
2

 and 𝐞  null
2 by 

  𝐞  span
2
= 𝐗 𝑓𝛂

2
= 𝐗 𝑓𝛂

𝑇
𝐗 𝑓𝛂 = 𝛂𝑇𝐗 𝑓

𝑇
𝐗 𝑓𝛂 = 𝛂𝑇𝐗 𝑓

𝑇
𝐞   

𝐞  null
2 = 𝐞  2 − 𝐞  span

2
 

 



Proof of tr 𝐒loc ≡ tr(𝐇loc𝐊loc) ≤ 𝐾 − 1 for LETKF local analysis 

• In each local analysis of LETKF, DFS can be expressed as  

• tr 𝐒 ≡ tr 𝐇𝐊 = tr 𝐇𝐀𝐇T𝐑−1   ∵ 𝐊 = 𝐀𝐇T𝐑−1  

• LETKF estimates the analysis error covariance by： 

•  𝐀 = 𝐗𝐛𝐀 𝐗𝐛
𝐓
, 𝐀 = K − 1 𝐈 + 𝐘𝐛

𝐓
𝐑−𝟏𝐘𝐛

−𝟏

=
𝟏

K−1
𝐈 + 𝐙𝐓𝐙

−𝟏
,  with 𝐙 ≡

𝟏

K−1
𝐑−

𝟏

𝟐𝐘𝐛 

• 𝐙𝐓𝐙 is a K × K positive definite symmetrix matrix. Its eigenvalue decomposition becomes： 

• 𝐙𝐓𝐙 = 𝐔𝚲𝐔−𝟏, 𝐔𝐔−𝟏 = 𝐈,  𝚲 = diag(λ1, λ2, ⋯ , λK)  

• Since rank 𝐙 = K − 1 ,  λK = 0. From positive definiteness of 𝐙𝐓𝐙,  λi> 0 (1 ≤ i ≤ K − 1). 

• Thus: 

• 𝐇𝐊 = 𝐇𝐀𝐇T𝐑−1 = 𝐇𝐗𝐛𝐀 𝐗𝐛
𝐓
𝐇T𝐑−1 = 𝐘𝐛𝐀 𝐘𝐛

𝐓
𝐑−1 = K − 1𝐑

1

2𝐙 𝐀 K − 1𝐑
1

2𝐙
T

𝐑−1 =

𝐑
1

2𝐙 𝐈 + 𝐙𝐓𝐙
−𝟏

𝐑
1

2𝐙
T

𝐑−1 

• Because trace is invariant under cyclic reordering,  

tr 𝐒 ≡ tr 𝐇𝐊 = tr 𝐑
1

2𝐙 𝐈 + 𝐙𝐓𝐙
−𝟏

𝐑
1

2𝐙
T

𝐑−1 = tr 𝐙 𝐈 + 𝐙𝐓𝐙
−𝟏
𝐙𝐓𝐑

1

2𝐑−1𝐑
1

2  =

tr 𝐙 𝐈 + 𝐙𝐓𝐙
−𝟏
𝐙𝐓 = tr 𝐈 + 𝐙𝐓𝐙

−𝟏
𝐙𝐓𝐙 = tr 𝐈 + 𝐔𝚲𝐔−𝟏 −𝟏

𝐔𝚲𝐔−𝟏 =

 
λi

1+λi
=

λ1

1+λ1
+⋯+

λK−1

1+λK−1
+

0

1+0
≤ K − 1K

i=1  


