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Part I-1:
Proactive QC
based on EFSO



Motivation:
forecast skill dropout problem

* Forecast skills of major NWP centers are very
nigh on average.

 However, they occasionally suffer from abrupt
“drops” (forecast skill dropouts, forecast busts).

e Recent studies (e.g. Kumar et al. 2009) have
shown that they are caused by assimilation of
flawed observations.

= Need to improve Quality Control (QC) so that
flawed obs can be detected and dropped.




However....

Operational NWP assimilates millions of observations from
dozens of different diverse sources.

= How can we detect the observations that degrade the forecast?

Typhoon
bogus

Coverage maps of
observations operationally
assimilated by JMA’s
global DA system
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EFSO: Ensemble Forecast Sensitivity
to Observations

Ferceived * Inspired by the FSO adjoint method of
Errors Langland and Baker (2004)
"o * Kalnay et. al (2012): improved,
€0 simpler formulation for EnKF.
v, e Otaetal. (2013) implemented the
/ new EFSO into the NCEP’s operational
—6 hr 00 hr analysis time t GFS system
T To-Izxavw /T
Ae* = = ¢, (e, er| sCe, JRY X Cle,, +e, ()
K 1 \
Reduction of forecast error O-B of ens.{e’an forecast ptbs.
by the assimilation of obs. analysis spread in obs. space

EFSO enables us to estimate how much each observation
improved/degraded forecast



Proactive QC: Find the obs. that make the 6hr
forecast worse using EFSO, then reject them

Algorithm:

Suppose we wish to identify and delete “flawed” obs. at
00h.

(1) Run regular DA cycle from -06h to 00h.
@ Run regular DA cycle from 00h to 06h.

@ Detect “regional dropouts” using the information
available from (1) and @.

@ Perform 6-hour EFSO to identify flawed obs at 00h.

@ If flawed obs are identified, repeat 00h analysis
without using the detected flawed obs.



Are 6 hours long enough
to capture forecast impacts?

Average net observation impact for each observation type

Averaged total Obs. Impact by obs. type Averaged total Obs. Impact by obs. type  Averaged total Obs. Impact by obs. type
Moist Energy norm, EFT=6hr Moist Energy norm, EFT=12hr Moist Energy norm, EFT=24hr
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EFSO average results are not very sensitive to the choice
of evaluation lead time.




Are 6 hours long enough
to capture forecast impacts?

MODIS winds near the North Pole on Feb 06 18UTC, 2012

Obs Impacts Type=259, EFT=06hr Obs Impacts Type=259, EFT=24hr
1 1 1 1

Lead-Tme: 6 hrs.E . Lead-Tie: 24 hrs. |

T ||
40E . 60E . 80E . . 100E 4E . 60E | . 80E . . 100E

Red: negative impact Blue: positive impact

EFSO results are not very sensitive to the choice of
evaluation lead time, even for individual cases.

— 6 hours are enough to detect flawed observations!




How many of the good/bad obs should we reject?
Does the rejection actually improve forecast?

Net EFSO Impact by obs. types
measured with moist total energy norm
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EFSO impact from

each MODIS wind observation
Obs Impacts Type=259, EFT=06hr
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0010 —< Drop all MODIS winds
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Distribution of the impact in one region

How many bad MODIS winds should we
drop?
e All of them?
* The ones with negative impact?
* Only the worst ones?
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How many of the good/bad obs should we reject?
Does the rejection actually improve forecast?

Relative 24-hr fest. improvement:= (€, toreac = € aterac )/ €'beforeqc X 100 [%]

Data selection based on 6-hour EFSO

delete a||_|_\_{|_£|3}5 winds delete all niigtlve impact Improved

T e o 50%

0%

-50%
Degraded

* Rejection of observations based on 6-hr impact improves 24-hr forecast !
* Best results obtained by rejecting all negatively impacting obs.
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Data denial experiments: Summary of 20 cases

local maximal improvement/degradation
and improvement averaged over a hemisphere

Case 6-hour Case 6-hour
one- one-

# allobs | allneg | sigma | netzero # allobs | allneg | sigma | netzero
max.imp. 12% | 11% 4% 5% max.imp. 11% 9% 2% 3%
max.deg. -9% 1% 1% -1% max.deg. -6% -5% -2% 0%

1 | avg.imp. 0.0% | 02% | 0.1% 0.1% 11 | avg.imp. 0.5% | 0.3% | 0.1% 0.1%
max.imp. 14% 11% 4%, max.imp. 37% 39% 19% 19%
max.deg. -5% -4% 0% max.deg. | -14% [ = -2% 2%

2 | avg.imp. | -0.1% | 0.3% | N/A 0.2% 12 | avg.imp. 0.7% | 0.7% | 0.5% 0.5%
max.imp. | 13% % 2% 4% maximp. | 24% 30% | J18% 19%
max.deg. | -15% | -5% | -1% 2% max.deg. -9% -10% | -12%

3 | avg.imp. 0.0% | 0.2% | 0.0% 0.0% 13 | avg.imp. 14% | 0.8% | 0.3% 0.4%
max.imp. 25% | 27% | 15% 13% max.imp. 5% 3% 1% 1%
max.deg. S% 5% | 2% -2% max.deg. 0% 0% 0% 0%

4 | avg.imp. 0.6% | 0.7% | 0.3% 0.2% 14 | avg.imp. 0.3% | 0.1% | 0.0% 0.1%
max.imp. 15% 19% | 23% 22% max.imp. 3% 1% 1% 1%
max.deg. || -32% | pu g, ~30% -13% max.deg. 2% -1% | -1% -1%

5 | avg.imp. | -0.2%€| -0.2% | ¥.2% 0.3% 15 | avg.imp. 01% | 0.1% | -0.0% 0.0%
max.imp. 9% ‘15% 12% 3% max.imp. 27% 30% 3% 16%
max.deg. 9% | 6% | -3% -1% max.deg. || -15% |- 19, -2%

6 | avg.imp. 0.0% | 0.4% | 0.3% 0.1% 16 | avg.imp. 1.9% | 1.8% | 1.3% 0.7%
max.imp. 17% | 13% 2% 0% max.imp. | 399 48% 6% 20%
max.deg. 9% | 5% | -3% 0% max.deg. || -15% |t 20 -2%

7 | avgimp. | -0.0% | 0.4% | 0.0% 0.0% 17 | avg.imp. | 0.8% | 21% | 1.2% 0.8%
max.imp. | 419 4% [ 1% | 10% max.imp. | 469 46% [ 5% | 21%
max.deg. | -18% -5% -2% max.deg. -0% —gl” 307 -2%

8 | avg.imp. 0.9% | 1.1% | 0.8% 0.4% 18 | avg.imp. 24% | 22% | 1.0% 0.8%
max.imp. ™% 8% 8% 8% max.imp. | 449 37% | I17% 14%
Inax..deg. -21% —_W‘h. -3% -4% max.deg. | -24% w10, -1%

9 | avg.imp. || -0.6%# -0.4% ¥.0% 0.1% 19 | avg.imp. | 22% | 22% | 1.0% 1.0%
max.imp. 25% | —15%, 6% max.imp. 12% | 10% 5% 3%
max.deg. —6% —6‘79 0% max.deg. S3% | 1% | -1% -1%

10 | avgimp. | 1.1% | 0.7% | N/A | 02% | 20 |avgimp. | 0.2% | 03% | 02% | 0.0%

Denying all neg obs (within the
region of 6-hour dropouts):

Hemispheric-scale
forecast error reduced
in 18 out of 20 cases.

Local improvement over
30% in 7 cases.

Improvement continues
after 24hrs.
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Key questions answered

* Are 6 hours long enough for detecting flawed
observations?

- Yes. 6-hr EFSO is equally capable of detecting flawed
obs. as 24-hr EFSO is.

 What is the best criterion for rejection of observations?

* - Best results by rejecting all negatives (allneg) of the
identified flawed-type inside the identified dropout
region.

* Does rejection of those observations really improve
analysis and forecast?

* - Yes, with >30% local improvement in 7 out of 20 cases.
Improvement continues after 24hrs.

13



Operational feasibility: Can we wait 6 hours?
- We don’t have to wait!

 We can exploit time lag between early analysis (GFS)
and final analysis (GDAS) (suggested by Dr. John
Derber)

— c.f. backup slide for detail

 The change in analysis by the rejection of a subset of
observations can be cheaply approximated by

—a,deny Sa —ob,deny __ 1 a~xraT 1 —1 ¢c—ob,deny

* No need to repeat costly analysis!
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Part |-2:
Ensemble Forecast Sensitivity
to R matrix (EFSR)

15



Motivation

* Data Assimilation combines information from
background and observations with an “optimal
weight” which depends on the background- and
observation- error covariances B and R.

* In EnKF, B (=P?) is dynamically estimated, but R is
still an external parameter.
— Truth is unknown. = True R is also unknown.

— R is specified empirically and subjectively.

- We need a systematic method for tuning R.



EFSR Formulation

e Daescu and Langland (2013) proposed an
adjoint-based formulation of forecast
sensitivity to R matrix.

‘Q’We can formulate an ensemble version based
on EFSO by Kalnay et al. (2012) :

Oe 2 — avy T - oa
[a_R] ~ TR 1 R 1Y0thocetlﬂ]i[R ol

©J

* |t tells us whether the forecast will be improved or
degraded by perturbing R.

- We can optimize R.



Perfect-model Experiment:
Experimental Setup

Model: Lorenz '96 model with N=40 and F=8.0

dz;
dt

= % (Tj41 — Tj2) —2; + F

DA method: 40 member LETKF, no localization
EFSR: no localization
Observations: available at every grid point.
Specification of R:

21 < j <40

J

Name True obs error variance Prescribed error variance
2
SPIKE gotme? _ J 087 g =11 092 = 0.22 everywhere
/ 022 j#11 J
0.12 4: odd
STAGGERED | goe?— ¢ J°© 9% = 0.22 everywhere
7 0.3 j: even 7
1< <20
: 0.32 “land”
LAND-OCEAN | g%™e* — { (“land”) 9% = 0.22 everywhere

0.12 (“ocean”)

Erroneous obs. variance

only at the 11-th grid pt.

* DA system assumes
constant R for all grid pts.

Design is inspired by
Liu and Kalnay (2008)
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Perfect-model Experiment:
Result (SPIKE experiment)

24-hr. EFSR sensitivity

B —

incorrect-R —e—

de'/dc®?

A L M A4 o -
T T T

. | . . . corrgct-R —
0 5 10 15 20 25 30 35 40
Grid Number

Negative sensitivity:
forecast error can be
reduced by increasing R
- Ris too small

* For “incorrect-R,” EFSR detects the mis-specification of R

at the 11t" grid point.
- We can detect mis-specified R

* For “correct-R,” EFSR diagnoses almost-zero sensitivity.

- No “false alerts”

28



Aircraftl 2 m——————— ]
Radiosonde - r LN
TR

MODIS wind| =2 F

AMSU-A

EFSR for GFS / GSI-LETKF hybrid

Averaged R-sensitivity
Moist Energ_y norm, EF_T=6h|_'

MODIS_Wind
ASCAT
PIBAL
MEXRAD Winc
Profiler_Wind
Dropsonde
WINDSAT Wi

SEVIRI

-0.02 0.00 002 0.04 006 008 010 012

Ristoo large
(= should reduce R)

* Aircraft, Radiosonde and AMSU-A: large positive sensitivity

« MODIS wind : negative sensitivity

* = Tuning experiment:

Aircraft, Radiosonde and AMSU-A: reduce Rby 0.9

MODIS wind: increase Rby 1.1

20



Tuning Experiment: Result
EFSO before/after tuning of R

Averaged total Obs. Impact by obs. type
Moist Energy norm, EFT=6hr
Aircraft 2> ' :

Radiosondé =

. . .
MODIS windeq

Aircraf Aircraft, Radiosonde, AMSU-A:

Radiosonde
Satellite_Wind

GPSRO * significant improvement of
Land-Surface .

MODIS Wing EFSO-impact

ASCAT

PIBAL (as expected)

NEXRAD Wind
Profiler Wind
Dropsonde
WINDSAT _Wind

Orone. MODIS wind :

AMSU-A ] ]

i * No improvement in EFSO
ﬂ‘.rghés (interpretation given in the extra slides)

MHS
GOES
SEVIRI

AMSU-A >

_;jlllljﬁ_._

Units: J kg?!

-0.60 -0.40 -0.20

e
o
S
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Summary for EFSR

* EFSR gives information on whether we should
increase/reduce prescribed R.

* Tuning of R based on this diagnostics improves
the EFSO.

= EFSR can be used to systematically optimize R.

22






EFSO implementation at JMA (by Yoichiro Ota)

* DA system: hybrid LETKF/4D-Var coupled with JMA GSM
— Resolution: (outer) TL959L100 ; (inner and ensemble) T319L100
— Window: 6 hours (analysis time +/- 3 hours)
— B weights: 0.85 for static, 0.25 for ensemble

—  Member size: 50

— Localization scales (e-folding):
* LETKF: Horizontal: 400km, Vertical: 0.4 scale heights
* 4D-Var: Horizontal: 800km, Vertical: 0.8 scale heights

— Covariance Inflation: Adaptive inflation of Miyoshi (2011)
— LETKF part initially coded by Dr. T. Miyoshi; maintained and updated by Y. Ota and T. Kadowaki.

* EFSO:
— Lead-times investigated: FT=0,6,12,24
— Localization scales: same as LEKTF
* advection: “moving localization scheme” of Ota et al.(2013) with scaling factor of 0.5 for horizontal wind.

— Verification: high-resolution analysis from 4D-Var
— Error norm: KE, Dry TE and Moist TE

e Period: Jul. 10, 2013, 06UTC — Jul. 15, 2013, 18UTC (5days, 20cases)

®)
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net EFSO contribution from each observation type
(target=globe; norm=moist total energy)

Total error reduction (2013071006-2013071500,FT=000,moist) Total error reduction (2013071006-2013071500,FT=006,moist)
005 T T T T T T | | ! | | | | | 005

EFT Ohrs

-0.05

Error reduction (J/kg)
Error reduction (J/kg)

Y

oY A T N T T N T N S S
0.05

FT24hrs

Error reduction ()/kg)
Error reduction (J/kg)

LAVHDYIY oo

&0 &8

f l Observation type Observation type BN Ak
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net EFSO contribution from each observation type
(target=globe; norm=moist total energy)

* Overall, the results are Total error reduction (2013071006-2013071500,FT=006,moist)
consistent with other centers: I B S L S A S
— at FT=24, contributions from '

radiances and conventional
data are comparable.

— AMSU-A, Radiosonde SYNOP
and Aircraft are the top
contributors to fcst err
reduction.

 However, contributions from
hyperspectral sounders (AIRS,
|IASI) are modest compared to
ECMWEF or NCEP.

e (important) 6-hour EFSO is
surprisingly consistent with -
24-hour EFSO! 0.2

@ = S F Observation type

Japan Meteorological Agency 26 Numerical PredictionDivision
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e So far, everything seems working well.
— EFSO estimation consistent with other FSO studies

— Plausible relative contributions from different
observation types

* However,....

Japan Meteorological Agency Numerical PredictionDivision



Estimated and actual}forecast error reduction
\ J |

1 1
— _JT /T
iEFSO Ae? = Eet|ocet|0 5 - 6cet| 6
JMA, FT=24
o2 —me
3 BRSO A AN * EFSO successfully reproduces

= temporal variation of forecast

A f —===error reductions (correlation

pe? 4 . .o==  coefficient as high as ~ 0.8),
7/1000 7/1100 7/1200 7/1300 7/1400 7/1500 ° Only ~ 20 % Of the amplitude
explained by EFSO.

NCEP, FT=24 (from Ota et al. 2013)

N e L
5 _ RMSE(Fixed): 0.318 — Estimate(Advected)
R — |In contrast to > 100%
(overestimation) for NCEP’s
EnKF (Ota et al. 2013)

1/8 1/9 110 1111 112 113 114 115

@lll\ Date (analysis time, UTC)

I
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A possible reason for impact underestimation

 EFSO implemented for IMA’s LETKF
underestimates forecast error reduction,
whereas, for NCEP’s EnKF, EFSO overestimates
the actual impact.

e Why?
 Bug? = not found.

e Possible reason: forecast error not well
covered by the space spanned by the forecast
ensemble

Japan Meteorological Agency Numerical PredictionDivision



A possible reason for impact underestimation
(cont’d)
 EFSO formulation:
Aef~9 ~ ——d"R™* [p oYX/ | Clef +e]_¢)

* In evaluating
T T 1 T .
X/ C(e{|0+ef|_6) = (c1/2x7) [C2(e£O+e{|_6)] =X/ &
~ . <¢T
the portion of & that lies in the nullspace of X/ does not
~rl _
contribute to X/ &, namely:
° Let

€ = € 5pan + € null, € span € span(X’), & 4y € null(X/)

then

~cl _ ~cl /. ~ ~cl
Xf e = Xf (e span + € nu]l) — Xf € span

®)

B
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A possible reason for impact underestimation
(cont’d)

* |s this really the reason why we had the impact
underestimation?

- Perform diagnostics:

* For each local patch,

— Decompose € into € ., and € .

~ 2
» ||e Span”
€12

— Compute the “explained fraction

Y EFSO
Ae?

— Compare this with the impact underestimation

@)
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i - . &
Diagnosed “explained fraction” € span|

~ |12
el
Horizontal distribution Vertical Profile
(near tropopause level) (global average)
”espanncdllz/ ”etota|“2 EFT=012, norm=moist, lev=050 FcstErr explained by EnsPtb, EFT=012
120" 180" -120° -60° 0* 100 T T T N T
= e " ; kineticr —+—
= AEE : —=| & 3 :,; 3 90 */_H:'::__r___:;_gg'_mc)irs% L .
by — 60" | 80 F T -
70 *x -
X
2 60 - 5 .
@ ‘_x/f
) o § 50 *_x' _Ff ]
- : wor 1l -+- Kinetic 1
' \ = | - > ! = < B N ZZ i :Z JE Dry
. e g v e =2 S oo L X . g
— = || - ol 1 Moist |
0° 60" 120° 180° -120° -80° 0* I _ - L
- 0 0.2 0.4 0.6 0.8 1
om—:ﬁ}_ 0.4 05 06 oms_ﬁo |lespannedll” / lletotall I
* Fcst err well-captured by ensemble over * Errors in moisture difficult to capture by
the SH ocean, but not over the land. the ensemble.
— Perhaps related to observation density:
— Data-sparse area: analysis (verification) Very good agreement between
and forecast both close to model’s free- e ” 3 EFSO EFSO
. . sSpan
run > e’ 110 Similar to Bred Vector - ”éle and I (both ~ 20%)
covered weII by X/
l:; ‘:‘ }Nr
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EFSO at JMA: Summary

* EFSO is successfully implemented on JMA’s global DA system, both
stand-alone LETKF and LETKF/4D-Var hybrid.

* Plausible impacts from different types of obs. that are consistent
with the literature.

 However, EFSO considerably underestimates the actual forecast
error reduction Ae/ 9.

* Diagnostics that decomposes the fcst err to spanned- and null-
spaces of the fcst ensemble X/ suggests that the underestimate is
caused because significant portion of fcst err lies in the null-space
of X/

 The diagnostics exposes the lack of the ensemble size (currently

only 50).

— —> further corroborated by DFS diagnostics (Part 11-2)
Japan Meteorological Agéncy Numerical PredictionDivision



Part ll-2:

Degrees of Freedom for Signals
(DFS)



Motivation

* How can we quantify the “value” of each observation?

* One possible quantification:
— an observation is valuable if it improves the forecast.

* => FSO/EFSO

* Another perspective (inspired from information
theory):

— An observation is valuable if it enhances our “knowledge”
about the true state of the atmosphere.

— Our “knowledge” is enhanced if the uncertainty of the
state estimate is reduced by assimilating the observation.

— —> Degrees of Freedom for Signal (DFS, or information
content).

@)
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What is DFS?

 Defined as the trace tr(S) of the “influence matrix” S = (HK)T = 9y

dy°

* Shown to behave similarly to Shannon entropy reduction under loose
conditions:

tr(S) = [H(x|xb) — H(x|xb,y°)] X const.

* Two ways to interpret:
1.  Analysis sensitivity to observations measured in obs space.
2. The amount of information that the analysis extracted from observations.

Simple illustrative examples:
- Forecast-Forecast cycle: analysis is always the same as the background.
- y? = yP > Sis null, DFS=tr(S) = 0 (0% information from obs.)
- Direct Insertion: background is completely replaced by the obs.
- y? =y° > Sisidentity, DFS = tr(S) = #obs
- DFS perobs =1 (100% information comes from obs. )
@:
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e First introduced to NWP by Cardinali et al. (2004)

* Popular diagnostics for variational DA systems.

— Routinely monitored by several NWP centers (e.g. ECMWF, Météo-
France)

* Liuetal. (2009) derived a simple method to compute DFS for EnKF:

_9y

dy° K-1

e Verified in Liu et al. (2009) with a simple AGCM (SPEEDY) in an
“identical-twin” scenario, but

a

S = (HK)" = R"'THAH' »~ R™I(YH)(Y)T

 Up to present, not yet applied to operational Ensemble DA with real
observations.

/ \\.‘
@
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Ensemble-based DFS diagnostics at IMA

Experimental set-up

* DA system: hybrid LETKF/4D-Var coupled with JMA GSM
— Resolution: (outer) TL959L100 ; (inner and ensemble) T319L100 |
— Window: 6 hours (analysis time +/- 3 hours)
— B weights:.0.85 for static, 0.25 for ensemble identical to EESO
— Member size: 50 in Part 11-1

— Localization scales (e-folding):
* LETKF: Horizontal: 400km, Vertical: 0.4 scale heights
* A4D-Var: Horizontal: 800km, Vertical: 0.8 scale heights

— Covariance Inflation: Adaptive inflation of Miyoshi (2011)
* DFS estimation Algorithms:

— Liu et al. (2009) étr(R‘l(Ya)(Ya)T)

— also tried the method of Lupu et al. (2011) as a double check:

* tr(HK) = tr(R‘llE(df‘)(dg)T)) with the expectation evaluated as the
average over a period and samples, assuming ergodicity and homogeneity

®)
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Ensemble-based DFS diagnostics at JMA
Results: DFS per obs

LETKF within JMA hvbrid DA

DFS per obs (201307106-2013071500,Globe) OI1=1.58,0.68

Self-Sensitivity [%]

30

25 |

20
15
10

-10

Global aVerage: L
1.58%0.68%

1 |i|ﬂimh.gu_uh:ﬂ;f

T T T T T T T T
Liu et al. (2009)
Lupu et al. (2011) -

Satellite radiances

Conventlonal

dONAS

dIHS
Aong
JANOSOIavy -

1071d |
14VHDNHIV

SNO0YAL

Y371404d
AVT3ASSNO

INL -
ys) oo

ISVI |
C4dSWY |

OYSSNO -
O3ONWY
OFTAWY
VNSWY -
SYIV -

SHW |-
ANIMLVOS -
SINSS

Observation type

 Reasonable agreement between the two methods (at least for conventional obs).

e Shockingly small observational impact:
— for JMA only about 1% of information comes from obs.,
) — whereas it is about 20% for ECMWF 4D-Var(Cardinali, 2013; ECMWF lecture notes)

Japan Meteorological Agency
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Ensemble-based DFS diagnostics at JMA
Results: DFS per obs

LETKF within JMA hvbrid DA

DFS per obs (201307106-2013071500,Globe) O1=1.58,0.68

30 T T T T T T T T T T T T T LI T t II (12069)1 T T
& U et al. =
25 | Global average: Lupu et al. (2011) .
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Observation type

* DFS particularly small for dense observations, satellite radiances in particular

(except AMSU-A and CSR").

* CSR: Clear Sky Radiances measured by infrared imagers on geostationary satellites (MTSAT,
GOES and Meteosat)

Japan Meteorological Agency
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Ensemble-based DFS for NCEP GFS hybrid GSI

EnSRF

LETKF

DFS per obs [%] GLB PAI DFS per obs [%] GLB PA@

Aircraft
Radiosonde
Satellite_Wind
GPSRO
Land-Surface
Marine-Surface
MODIS_Wind
ASCAT

PIBAL
NEXRAD_Wind
Profiler_Wind
Dropsonde
WINDSAT_Wind
TCVital

conventional

___hyperspectral || o - ~ Satellite
ésour?dersé Radiamce

4 o 4 8 12 s 12 16

@)=

Japan Mete

orological A

SR
AMSU-A
1ASI1
AIRS

SEVIRI

To discern if the “very
small DFS problem” is
merely an idiosyncrasy of
JMA, we computed DFS
for NCEP’s lower-
resolution version (from
Part 1) of GFS/GSI hybrid
DA as well.

Results: DFS is very small

for NCEP’s system as
well.

- “Small DFS problem”
possibly universal to all
EnKF systems.

gency
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Why DFS so small for LETKF?

* Our Answer: not enough ensemble size.
* We can show, for a local analysis in LETKF, that:
tr(Sioe) = tr(KH HE ) = tr(HjoKioe) < K — 1
 j.e., DFS is bounded from above by the degrees of freedom of the
background ensemble. See extra-slide for proof.

*  The number of obs. locally assimilated p;,c is ~ 0(103), much larger than
the member size K = 50.

* Suppose, for convenience, that each obs. assimilated locally has
comparable DFS, and the obs. density can be assumed homogeneous.

K-1
Then, we can assume that (Sjoc) ; ~ .

, Which gives:
loc
K-1

tr(Sglobal) = 2i(S10¢) ii ~ Pglobal X Ploc

tr(Sgiobal)  K-1 : . 49
g~ , which, for our system, is —— ~ 0(1%)
Pglobal Ploc 4,000

— DFS per obs=

®)-
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Implications

 We have seen that, for an EnKF with ensemble size much smaller
than the number of the locally assimilated observations, DFS is
inevitably bounded from above by the member size.

* This means that such a system cannot fully extract information from
observations.

 We believe this fact has a lot of important implications, e.g.:
— why covariance inflation is necessary,

— what the localization scale should be, given the ensemble size
and observation density,

— how, in serial assimilation, the order of assimilating
observations affects the accuracy of the analysis,

— how dense observations should be thinned, ...etc.

@)

B
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Implication on covariance inflation

If the ensemble size is insufficient, DFS=tr(R"1HAHT) is
underestimated.

— The analysis error covariance A is also underestimated.
- Need for covariance inflation.

Traditionally, nonlinearity and model errors are considered to be
the source of necessity for covariance inflation.

— From this aspect, it is B rather than A that is underestimated.
— This is true for Extended Kalman Filter.

The inherent underestimation of DFS could be another mechanism
that requires covariance inflation for EnKF.

If so, diagnostics of DFS could give some guidance on how to inflate
covariance.
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Implication on covariance localization

* Traditionally, it is believed that localization is necessary to filter out spurious
correlations in P® due to sampling errors.

* From this perspective, observation density/distribution does not come into play.

* The fact that DFS is bounded by the member size provides another criterion for
optimality of localization:

) 11 1 _1
— Let {A;} be the eigenvalues of R 2HB:2 (= ﬁR 2Yb). Then,
Ai
1+4;

> DFS will not be underestimated if K-th largest eigenvalue Ay is negligibly small.

— DFS=)}; (see the extra-slide)

* This gives an criterion for the optimal member size K given the observation
network and background error covariance.

* Inversely, given the member size K, we can choose localization scale so that DFS is
not artificially bounded. For this, we require that the observations within the
localized area are few enough such that 4; < 1 for some i < K.
@)
Japan Meteorological Agency 45 Numerical PredictionDivision




Implication on order of obs. assimilation in serial EnKF

* Given that the total DFS is bounded by the ensemble size, it would make
sense to assimilate the observation with the largest DFS first.

* |n fact, Dr. Jeff Whitaker showed at ISDA 2015 that, in serial EnSRF, the
following procedure improves the analysis:

L : : H
— assimilating observations from those with the smallest p :=
with the largest,
— assigning larger localization scale to obs. with smaller p.

T _ T
HAR _ BUKIBH _ 1 _ HK =1-DFS, i.e., Dr. Jeff
HBH HBH

Whitaker’s successful method is equivalent to:

* [tiseasytoseep =

— assimilating observations from largest DFS to those with smallest,
— assigning a larger localization scale to obs. with larger DFS

> DFS argument could provide this method with theoretical justification.
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Implication for observation thinning

* Related to the previous argument, in a
situation where thinning of observations is
necessary (e.g., very dense observation such
as satellite hyperspectral sounding, radar data,
etc.), it would make sense to assimilate only
the observations with largest DFS.
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Summary of DFS diagnostics

* Ensemble based DFS estimation of Liu et al.
(2009) is implemented for the first time
(perhaps) to a quasi-operational DA system
with real data.

* |t was found that DFS is critically bounded
from above by the member size.

 The above result entails a lot of implications
for possible improvements to EnKF
methodology.

Japan Meteorological Agency Numerical PredictionDivision



Last comment....

* Our diagnostics, both EFSO and DFS, strongly
indicates importance of larger members.

* RIKEN/AICS DA team is leading the world in
the area of ensemble DA with massively many
members. Your experience/insight will be
invaluable for us!

e \We would like to collaborate with RIKEN DA

. . D
- team, especially from this aspect! Tk you very
(@ “much!
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* At FT=24, only slightly more than 50% of the
observations contribute to improve forecast (as
pointed out by many FSO studies in the literature).

* Percentage of “helpful” observations increases for
shorter evaluation lead-time.

 — Consistent with Hotta (2014, PhD. Dissertation).



More applications of EFSO

(1) Collaboration with instrument/retrieval developers:

 EFSO can be used to build a database of flawed
observations along with their relevant metadata.

* - Providing such database to instrument/retrieval
developers would help them identify/fix their problems.

(2) Acceleration of development for assimilation of new
observing systems:
* Current OSE-based approach:

— Impact from new obs is obscured by the presence of many obs
that are already assimilated.

— —> Difficult to extract statistically significant signals.

— EFSO-based data selection will enable efficient determination
of an optimal way to assimilate new observing systems.
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Tuning Experiment: Result
EFSO before/after tuning of R

Averaged total Obs. Impact by obs. type
Moist Energy norm, EFT= Bhr

Aircraft 2

Radlosonde =

MODIS wmd%Ci

e Aircraft, Radiosonde, AMSU-A:
Ajrcraft . . o .
Radiosonde * significant improvement of

apsAG

E?‘S}h EFSO-impact

ASCAT (as expected)

PIBAL

NEXRAD_Wind

Profiler Wind

Dropsonde .

yosat.wnd o MODIS wind :

Ozon . .

AVSU.A * No improvementin EFSO
ATvS (contrary to expectation)
MHS

GOES

SEVIRI

AMSU-A >

2 JIIII]ﬁ.._

Units: J kg

-0. ﬁl.']' -ﬂ.-‘-iﬂ -0.20 0

Why no improvement in MODIS?

e MODIS had “flawed” obs. along with “helpful” obs.

e The “flawed” obs. might have resulted in incorrect estimation of EFSR.
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Excluding cases where
MODIS wind had negative impact

e MODIS wind exhibited

FSO impact by MODIS-Wind several negatively-impacting

Error Norm: moist total energy Evaluation Lead Time: 06hrs.
17 . s ; ; N cases.
;TNegatlve Impact K >
= 0] 3 3 Y * Exclude negative cases
g ‘ | \[ i
S ] ‘ | UU @ * -> EFSR for MODIS becomes
B o i i neutral
:l, Positive Impact r
UL U ‘ * > Consistent with the result
01/08 00:00 01/1512:00 01/23 00:00 01/30 12:00 02/07 00:00 . .
Averaged R-sensitivity (MODIS good) Averaged R-sensitivity of tunin g experlment
Moist Energy norm, EFT=6hr Moist Energy norm, EFT=6hr

] Aircraft

: Radiosonde
! Satellite_Wind
: GPSRO

llJ

N e —eRSd’?c'{s%%f e

6 MODIS wind >

Land-Surface
Marine-Surface
MODIS_Wind
ASCAT

e .. Lesson:

Profiler_Wind

wosrwe  *  Before performing

TCVital

SRS A EFSR, we should

1AS]
AIRS

s remove “bad” obs.

MHS
GOES
SEVIRI

= AMSU-A

-0.02 0.00 0.02 0.04 0.06 0.08 0.10 0.12 -0.02 0.00 002 004 006 008 010 0.12

Excluding “flawed” Including “flawed”
MODIS case MODIS case o5



Implementation to the real operational system
(1) Can we wait for 6 hours?

ldea: Exploit the time lag between “early analysis”
and “cycle (final) analysis”

(suggested by Dr. John Derber, 2013)

cycle (final) analysis: maintains analysis-forecast cycle Time
early analysis: provides initial condition for extended forecast
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Implementation to the real operational system
(1) we don’t need to wait 6 hours!

ldea: Exploit the time lag between “early analysis”
and “cycle (final) analysis”

(suggested by Dr. John Derber, 2013)

Early
anal.
06 UTC

cycle (final) analysis: maintains analysis-forecast cycle Time
early analysis: provides initial condition for extended forecast
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Decomposition of fcst error
into column- and null- space of fcst ptbs

Fix a grid and consider a local patch that would be used if an observation was located at the grid point in
question. In the derivation below, all vectors/matrices are assumed to be restricted to this local patch.

In EnKF, the sum of each column of X/ is zero, so rank(X/)=K — 1:
span(X/) = span ([X/] .-, [X/],_,[X’], ) = span ([X/] -, [X'], _, )
In light of this, we now denote by X/ the first K — 1 columns of the original X/

1
. Now, suppose that € = CE(e{w+e{|_6) can be decomposed as

€ = €span + € nu € span = Dhet Ofk[xf]k =Xaq,
a=(a, - ag_q)T
Multiplying by (Cl/ZXf)T =:Xforom left, € L. by definition vanishes, giving:
X'e =X (X a+&mm) =X Xa
ca=(X1%) e

~ 2 ~
Once a is determined, we can obtain ||& span” and ||€ ,unll? by

@)=
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Proof of tr(S;,.) = tr(H;,cKjoc) < K — 1 for LETKF local analysis

In each local analysis of LETKF, DFS can be expressed as
«  tr(S) = tr(HK) = tr(HAHTR™!) (= K= AHTR™?)

*  LETKF estimates the analysis error covariance by:

¢+ A=XPAX® A =[(K-DI+ YbTR‘le]_l =L (1+2'2)", withZ = —_R2Y"
’ K-1 ’ ~ VK-1

« Z"ZisaK x K positive definite symmetrix matrix. Its eigenvalue decomposition becomes:

« Z'Z=UAULUU =1 A=diag(A, Ay, ,Ak)

e Sincerank(Z) =K—1, Ag = 0.From positive definiteness of ZTZ, ;> 0 (1 <i < K- 1).
* Thus:

- - 1\~ 15T
.+ HK = HAHTR™! = HXPAX?"HTR! = YPAY?'R! = (VK= 1RzZ)A(VK = 1RzZ) R! =
1 _ 1 \T
Roz(1+2"2) ' (Rez) R
* Because trace is invariant under cyclic reordering,
1 1.2 \T 1 .1 1
tr(S) = tr(HK) = tr (Rzz(l +Z77) (R2z) R-l) =tr (z(l +Z277) ZTRzR-le) =

w(Z(1+2'2) 2" = o ((1 + ZTZ)_IZTZ) = tr ((1 + UAU—l)"1UAU—1) =
Ai A AK-1 0

K _— ee e —
T =114 7 1404 Tt 1+Ak_1 T 140 =K-1
(U ,’
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