Assimilation of cloud-affected infrared radiances

Kozo Okamoto

Meteorological Research Institute (MRI), Japan Meteorological Agency (JMA)

RIKEN-AICS DA seminar, 15 Dec. 2015, RIKEN-AICS, Kobe, Japan

Content

- 1. Background
- 2. Simple cloud approach
- 3. All-sky approach
- 4. Summary and plans

1. Background(1/2)

- Satellite radiance data from sounders/imagers have been playing significant roles in NWP data assimilation
- But the use of cloud-affected radiances is still limited especially for infrared (IR) spectral region
 - Mostly clear-sky region only

Issues: limited area, meteorologically less active, dry bias

Cloud-affected Micro Wave (MW) radiances have been operationally assimilated at ECMWF since 2009, and steadily improved

- All-sky water-vapour, cloud and precipitation assimilation improves mediumrange dynamical forecasts
- 4D-Var "tracing" adjusts dynamical initial conditions to fit WV, cloud and precipitation features in the analysis
- Going from "clear-sky" to "all-sky" roughly doubles the impact of WV channels

Background (2/2)

Pros & Cons of IR radiance, compared with MW

- Pros
 - Many instruments and satellites available
 - High spatial resolution: smaller footprint size & higher vertical resolution
 - High temporal resolution from geo-satellite (and many LEO satellites)
- Cons: strong cloud absorption
 - High nonlinear response to clouds
 - Little information in and below (modest to thick) clouds

Goal of this study is effective assimilation of cloudaffected IR radiances, in addition to clear-sky IR radiances, to improve analysis and forecasts

Four approaches to assimilate cloudy IR data

- 1. Retrieval
 - Cloud top height (temperature), (effective) cloud fraction,,,
 - Issues: Inconsistent definition for model and obs
- 2. Cloud-cleared radiance (CCR)
 - Construct pseudo clear-sky rad from adjacent pixel rads
 - Issues: hard to estimate obs error of the CCR

<u>3. Simple cloud radiance</u>

- Assume homogeneous single-layer cloud to simplify RT calculation
- Implemented in the ECMWF operational system

<u>4. All-sky radiance</u>

- Handle general clouds (multi-layer, from thin to opaque)
- Implemented in the ECMWF operational system only for MW humidity ch

Cloud-Clearing Methodology (NCEP)

FOV1: $R_1 = (1-\alpha_1).Rclr + \alpha_1.R_{cld}$

FOV2: $R_2 = (1-\alpha_2).Rclr + \alpha_2.R_{cld}$

Assume: R_{clr} and R_{cld} in the 2 adjacent FOVs are same After eliminating R_{cld} from above 2 equations, we can get $R_{ccr} = R_{clr} = R_1 + \eta \cdot (R_1 - R_2),$ where $\eta = \alpha_1 / (\alpha_2 - \alpha_1)$ and $\alpha_1 \neq \alpha_1$

Extend to multiple cloud layers and more adjacent pixels:

$$R_{ccr} = R_1 + \eta_1 \cdot (R_1 - R_2) + \eta_2 \cdot (R_1 - R_3) + \dots + \eta_k \cdot (R_1 - R_k) ,$$

 η_1 , η_2 ... are cloud-clearing parameters which depend on the α only. They can be estimated using a set of cloud-sounding channels to solve an over-constrained least-squares problem.

A. Collard (2015 JCSDA-ECMWF WS)

1. Background

2. Simple cloud approach

from Okamoto (2013, QJRMS)

- 3. All-sky approach
- 4. Summary and plans

Simple cloud approach

- Radiative Transfer Model (RTM) for simple cloud
 - $\blacksquare \ R^{i} = R^{i}_{\ clr} (1 N_{e}) + R^{i}_{\ ovc} N_{e}$
 - $\square R^{i}_{clr}: clear-sky radiance of channel I$
 - $\square R^{i}_{ovc} : \text{ completely overcast radiance from a blackbody cloud at top pressure } P_{c}$
 - □ N_e : effective cloud fraction = (geometric fraction N)*(cloud emissivity e)
 - **Cloud effect is simulated by only** N_e & P_c
 - Condition 1: cloud is homogeneous, single-layer
- $\square N_e$ & P_c are estimated by minimizing $J = \sum_i^{Nch} (R_m^i R^i)^2$
 - $\square R^{i}_{m}$: observed radiance at channel *i*
 - Condition 2: N_e is the same at all channels in J (emissivity consistency or gray cloud)
- Note that no model cloud variables are used

Key is how to identify cases that satisfy these conditions

Okamoto (2013, QJRMS) Assimilate cloudy rad of MTSAT-1R with the simple cloud approach (

10/30

Developed QC procedures to satisfy the conditions for MTSAT-1R

- *N_e*>0.8
- Clear-sky pixel ratio<5%, and standard deviation of pixel TB < 4.5
 Super-ob is created by tens of original pixels to better handle representative diff between obs and model (30km in radius)
- Consistent OB-FG at different ch \rightarrow 160< P_c <650hPa
- Strict gross error QC : |OB-FG|<0.6K</p>
- → We call these radiances OR (overcast radiance)

Unique characteristics of ORs from geo-sat

- Highly resolved vertical information of temperature at the cloud top
- Highly resolved temporal information
 - Every hour for full disk region
 - Tracer effect through linearized forecast model in 4D-Var
 - Lupu & McNally (2012)

Assimilation of MTSAT-1R ORs

- Assimilate ORs at IR1 (11um) channel of MTSAT-1R in JMA global 4D-Var
 - $N_e \& P_c$ are given from background and fixed in minimization
- Complement operationally used CSRs (clear-sky radiances)
 - Half the number of CSRs

One month accumulated number of assimilated data in August 2009

Forecast improvement by ORs

Summary of simple cloud approach

- Easy implementation
 - 1. Estimate Pc and Ne from FG and OB
 - 2. QC
 - 3. Add cloud effect by including Pc and Ne in RTM
- However, cloudy radiance data are still limited in use
 - Applicable to homogeneous single-layer cloud cases only
 - Model cloud variables are not directly used (corrected) in the analysis
- Exploit IR radiances in more general cloud cases → all-sky radiance assimilation
 - Use more general RTM and cloud profiles
 - Apply all-sky MW radiance assimilation approach to IR

Content

- 1. Background
- 2. Simple cloud approach

3. All-sky approach

from Okamoto et al. (2014, QJRMS), Okamoto & Kazumori (2015, JCSDA-ECMWF WS)

4. Summary and plans

Approach	Clear-sky	Simple-cloud	All-sky
Target	Clear-sky rad	Homogeneous single-layer cloudy rad	General cloudy rad
RTM and inputs	R _{clr} (T _i ,Q _i) ✓ no cloud effect	$(1-N_e)^*R_{clr} + N_e^*R_{ovc}$ $\checkmark R_{ovc}(T_i,Q_i,P_c)$	R(T _i ,Q _i , C _i , F _i) ✓ full cloud effect
Initialize cloud	No	No or Partially yes	Yes
Challenges	 ✓ Clear-sky identification 	 ✓ Retrieve Ne,Pc ✓ Simple cloud identification 	 ✓ Non-Gaussianity, Non-linearity ✓ Cloud predictability ✓ RTM
Status	Operational at many NWP centers	Operational at ECMWF and MeteoFrance	Not operational except for MW at ECMWF

- T_i: temperature profile, Q_i: humidity profile
- P_c: cloud top pressure, N_e: effective cloud fraction
- C_i: cloud content profile, F_i: cloud fraction profile

As the first step of all-sky IR rad assimilation,

- Examine model reproductivity of cloudy radiances
 - Compare obs and model simulation
- Develop a parameter to estimate cloud effect in radiance space
 - Predict OB-FG statistics using the parameter
 - Cloud plays dominant effect on OB-FG
 - Apply cloud-dependent QC and obs.error assignment using the parameter
- Assimilation experiment is under preparation
- Results of the comparison and applying the cloud effect parameter
 - Metop/IASI in global system (ECMWF-IFS)
 - **T**511L91 (~40km)
 - RTTOV10.2, Cloud water/ice/fraction from moist physics model
 - □ 1~15 Aug. 2011, over the sea
 - Himawari-8/AHI in meso-scale cloud resolving system (JMA-NHM)

Cloud effect on OB-FG

 Develop a new parameter representing cloud effect : CA

 CA = 0.5*(|FG-FGclr|+|OB-FGclr|), FGclr=clear-sky FG

 As CA increases, OB-FG variability monotonically increases. After saturation, it decreases (in overcast condition)
 This simple relationship between CA and OB-FG SD enables us to predict (cloud-dependent) OB-FG SD using CA

Gaussianity of normalized OB-FG PDF

20/30

Normalized OB-FG PDF shows

- Gaussian form for ch that is not strongly affected by clouds
- Excessively sharp peak and long tail when cloud-dependency of SD is ignored
- Gaussian form if cloud-dependent SD is used

Application of predicting OB-FG SD

The predicted OB-FG SD can be used for

Cloud-dependent QC

- Vary the threshold dependent on cloud effects
- Cloud-dependent obs error
 - Increase (decrease) obs error for data with large (small) cloud effect

Example: cloud-dependent obs error

- Calculate observation errors in thin cloud case
 - Assume OB-FG SD equals obs error
 - Black: obs error for clear-sky rad, used in the ECMWF operational system
 - Green: constant obs error, from the whole sample \rightarrow excessively large
 - Red: cloud-dependent obs error, predicted from CA-SD LUT
 - In this example, due to thin cloud, cloud-dependent obs error is much smaller than constant obs error

Profiles (black) and Jacobians (gray) of the thin cloud case

Information content (IC) for clear-sky, cloud-dep, const obs.error

Himawari8/AHI comparison with JMA-NHM

Himawari-8,9/AHI			
Band	Wavelength [µm]	Spatial Resolution	
1	0.43 - 0.48	1km	
2	0.50 - 0.52	1km	
3	0.63 - 0.66	0.5km	
4	0.85 - 0.87	1km	
5	1.60 - 1.62	2km	
6	2.25 - 2.27	2km	
7	3.74 - 3.96	2km	
8	6.06 - 6.43	2km	
9	6.89 - 7.01	2km	
10	7.26 - 7.43	2km	
11	8.44 - 8.76	2km	
12	9.54 - 9.72	2km	
13	10.3 - 10.6	2km	
14	11.1- 11.3	2km	
15	12.2 - 12.5	2km	
16	13.2 - 13.4	2km	

- Himawari-8/AHI
 - 10 IR bands with 2.0 km resolution
- JMA-NHM
 - Cloud-resolving, Non-Hydrostatic Model, used for operational meso-scale system
 - 5 hydrometeors
 - 5km-res, 50 layers,
- RTTOV11.2
 - Input clouds from micro-physical process (grid-scale cloud)
 - Cloud fraction is set to one
- Pre-processings
 - Super-ob : Averaging 2x2pixels
 - Remove data with |OB-FG|>30K or 50K
- Case : 03~09 UTC on 7~11 Sep 2015
 - ~220,000 samples

Himawari8/AHI comparison with JMA-NHM

AHI comparison with JMA-NHM

AHI OB-FG variability and PDF

Summary and plans

Cloud-affected IR radiances contains unique info of T/Q/C with high spatial/temporal resolution

Simple cloud approach

- Assume homogeneous single-layer clouds
- Easy implementation but small impacts due to restricted additional data and indirect adjustment of cloud variables

All-sky approach

- Handle general clouds → require NWP and RT models to well simulate cloud (effect)
- Cloud effect parameter CA was developed to predict OB-FG variability
 - $\Box \rightarrow \text{Cloud-dependent QC and obs error (and BC?)}$
- Assimilation experiments with AHI and JMANHM-Letkf is under preparation