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Background covariance How to solve x0 How to calculate
3DVAR,4DVAR Statistic Implicitly With adjoint of M and H
EnKF Ensemble-based Explicitly Ensemble approximation
Hybrid-4DVAR Ensemble-based Implicitly With adjoint of M and H
EnVAR Ensemble-based Implicitly Ensemble approximation

Ensemble-based variational data assimilation
Introduction
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Cost 
Function

Bayesian assimilation provides Analysis x0 from First guess x0
f and Observation yt.

x0 takes a maximum likelihood value when cost function J is minimum (∇J=0).

Several methods are classified using how to solve ∇J=0.

Background term Observation term

Gradient

EnVAR provides analysis implicitly without adjoint models
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Why is ∇J=0 solved implicitly?
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Implicit method is better because 
observation operator are strictly treated
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Quadratic 
function of x0

Quadratic 
function of 
H(Mt(x0))

Gaussian approximation

Observation term is approximated 
to quadratic function of x0
by assuming linear H(Mt(x0))

∇J=0 can be 
solved explicitly
e.g., EnKF

x0 is changed 
by solving ∇J=0 
implicitly

H(Mt(x0)) is strictly treated
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Cost 
Function

Background term Observation term



Previous studies about EnVAR
• Zupanski (2005), Zupanski et al. (2008) 

• EnVAR method is suggested

• Liu et al. (2008, 2009), Buehner (2013)
• 4D-EnVAR is compared to other methods
• Gaussian approximation
• Spatially localized background covariance

• Hunt et al. (2004)
• 4D-EnKF is suggested
• Any time analysis in assimilation window is provided

In this study, 4D-EnVAR is compared to 4D-EnKF (LETKF)

Liu et al. (2008)
Assimilation 
window

tn-1 tntimetn-1 tntime

4D-EnKF,EnVAR3D-EnKF,EnVAR
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Observation system simulation experiments
with SPEEDY model

Number of members: 20
Assimilation window: 6 hours
Localization radius: σH=1000(km), σV=0.1(sigma)
Observations: U, V, T, RH, Ps
Inflation: Multiplicative (=1.1)
Analysis time: Center of the window (t=3h)
Observation time: t=1h, 3h, 5h Positions of observations

6/33OSSE

Number of forecast-analysis cycles (every 6 hour)

Bias and RMSE of EnVAR are smaller than those of LETKF

Bias of specific humidity 
6-hour forecast (g/kg) to 

nature run

RMSE of specific humidity 
6-hour forecast (g/kg) to 

nature run



Analysis

Localization

Observation error variance Observation operator (non-linear)

- Observation localization
- Derived from Background localization
- Globally defined J
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Then,
Analysis valuable 
is transformed 
from x to w
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Similar to LETKF

Different from LETKF

i: analysis points
k: observation points
t: time slots
j: ensemble members

Multiplicative inflation



EnVAR without localization
Formulation

Weighted summation of 
ensemble perturbations 

is added to first guess
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Cost function:

Components 
formulation:

Approximation of 
B using ensemble

Here,

⇒ Solve for and gain a
tix ,jw

i: grid points(1-N)
k: obs. points(1-K)
t: time slots(1-T)
j: members(1-M)



EnVAR with observation localization
Formulation
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i, l: grid points(1-N)
k: obs. points(1-K)
t: time slots(1-T)
j: members(1-M)

The number of ensemble members is usually too small to make 
analysis with large degree of freedom.
⇒ Localization required for increasing degree of freedom of

Then, cost function:

Gradient of cost function:

Localization factor
(If grid i1 is far 
from grid i2, it is 
small or 0.)

How is this calculated?

jw
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Multiplicative inflation parameter



EnVAR with observation localization
Formulation

   01~1
~
~

,
,,

,
2 




 

tk
tk

a
tktlkj

tk
lj

lj

yHH
R

wM
w
J x



   

   

    
    a

tN
a
tk

f
tNj

a
tN

f
tj

a
tkkl

i

a
tN

a
ti

a
tk

a
tN

f
tji

a
ti

a
tkli

i

f
tjilif

tji

a
tN

a
ti

a
tk

a
tN

f
tji

a
ti

a
tk

i lj

a
ti

a
ti

a
tk

lj

a
tk

tlkj

xxHxxxxHL

xxxHxxxxHL

xL
x

xxxHxxxxH

w
x

x
H

w
HH

,,1,,,1,1
2/1

,,,1,,,,1
2/1

,
2/1

,

,,,1,,,,1

,

,
,

,...,,...,

,...,,...,,...,,...,

,...,,...,,...,,...,

~~

1

1111

1

11

1

111

1

1

1





































 xx

10/33

i, l: grid points(1-N)
k: obs. points(1-K)
t: time slots(1-T)
j: members(1-M)

Here, Using following equation
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If i1 and k are completely on the same point, it is same as        .
(Then, Hk depends only on the valuable on the grid i1.)
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How to solve ∇J=0
Formulation
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Independently calculated 
for every analysis points

Not independent 
for analysis points

Approximated 
new cost function 
is defined i, l: grid points(1-N)

k: obs. points(1-K)
t: time slots(1-T)
j: members(1-M)

Using following equation
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Observation localization



Summary of EnVAR formulation
Analysis
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Localization facter

Observation error variance

Observation operator
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Eigenvalue decomposition 
of Hessian matrix of J

Minimization of globally 
defined J with 
observation localization
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a
tktkj HHH xxx  ,, 

Formulation

i: analysis points
k: observation points
t: time slots
j: ensemble members



EnVAR

LETKF

[1] H (Local or Global)
Calculated with w at analysis point
Independently for each analysis
Calculated with w at observation point 
for all analysis
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Difference between LETKF and EnVAR

If H is linear and analysis point is same as 
observation point, EnVAR=LETKF

EnVAR calculates H directly

EnVAR

LETKF
[2] Gradient of H (around First guess or Analysis)
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If H is linear, EnVAR=LETKF
δH in EnVAR is around analysis
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●

●

ijw
jik

w
Analysis point i

Observation point k

Formulation

i: analysis points
k: observation points
t: time slots
j: ensemble members



First guess of relative humidity 
and horizontal wind

Comparison to LETKF (Linear H case)
Number of members: 20
Localization radius: σH=1000(km), σV=0.1(sigma)
Observations: U=5m/s @20N,180E, σ=0.835

Analysis-First guess
(LETKF)

Analysis-First guess 
(EnVAR)

Increment of EnVAR is same as LETKF at observation point
but smaller far from observation point (”severer” localization)

U=-9.8 m s-1 U=-0.9 m s-1 U=-0.9 m s-1

Single-observation assimilation 14/33



Observation localization
of LETKF

Background 
localization

Why is EnVAR localization “severer” than LETKF?
15/33

Observation localization of this EnVAR is derived from 
background localization, but that of LETKF is not.
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Therefore, background 
localization is “severer”

Then,

1L

e.g., In two analysis points and one 
observation,                            ,              , and

Single-observation assimilation

  ffa H xyKxx    1xH f x

(Greybush et al. 2011)



First guess of relative humidity 
and horizontal wind

Comparison to LETKF (Non-linear H case)
Number of members: 20
Localization radius: σH=1000(km), σV=0.1(sigma)
Observations: RH=30% @20N,180E, σ=0.835

Analysis-First guess
(LETKF)

Analysis-First guess 
(EnVAR)

Single-observation assimilation

EnVAR analysis is closer to observation than LETKF

RH=53.2 % RH=44.2 % RH=39.6 %

16/33



Observation system simulation experiments
with SPEEDY model

Number of members: 20
Assimilation window: 6 hours
Localization radius: σH=1000(km), σV=0.1(sigma)
Observations: U, V, T, RH, Ps
Inflation: Multiplicative (=1.1)
Analysis time: center of the window
Observation time: t=1h, 3h, 5h Positions of observations

17/33OSSE

Number of forecast-analysis cycles (every 6 hour)

Bias of specific humidity 
6-hour forecast (g/kg) to 

nature run

RMSE of specific humidity 
6-hour forecast (g/kg) to 

nature run

EnVAR is better caused by difference of how to calculate H and δH



O-F Histgram
18/33OSSE

Observation-Forecast (O-F) histogram in all EnVAR analysis

Specific humidity assimilation:
Linear H but non-Gaussian probability distribution



Specific humidity assimilation
19/33OSSE

Thick: relative humidity assimilation (CTL)
Thin: specific humidity assimilation

LETKF EnVAR Bias of specific humidity 
6-hour forecast (g/kg) to 

nature run

RMSE of specific humidity 
6-hour forecast (g/kg) to 

nature run
EnVAR is better than LETKF, and
relative humidity assimilation is better 
than specific humidity assimilation



Globally defined H

calculated with w at observation point

Locally defined H

calculated with w at analysis point

EnVAR with locally defined cost function
20/33OSSE

Black: LETKF
Red: EnVAR with Global J
Blue: EnVAR with Local J

Similar to LETKF
→ Global J has a good impact

Local J is minimized implicitly
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× 6

Bias of specific humidity 
6-hour forecast (g/kg) to 

nature run

RMSE of specific humidity 
6-hour forecast (g/kg) to 

nature run

Calclation time (sec)

× >100



EnVAR with the specific number of iteration
21/33OSSE

Black: LETKF
Red: EnVAR (CTL)
Green: EnVAR (stop after 5 iterations)
Blue: EnVAR (stop after 2 iterations)

EnVAR with 5 iterations 
is better than LETKF 
(calculation time is 2-3 
times as long as LETKF)

× 2-3

Bias of specific humidity 
6-hour forecast (g/kg) to 

nature run

RMSE of specific humidity 
6-hour forecast (g/kg) to 

nature run



• We developed EnVAR with observation localization and 
compared it to LETKF

◎ EnVAR analysis was closer to true value than LETKF 
because globally defined cost function is minimized
× Several times longer calculation time than LETKF

• Non-linear observation operator is strictly treated in EnVAR
(Gaussian approximation should not be used)

• Observation localization of this EnVAR is same as background 
localization (“severer” than localization of LETKF)

Summary of OSSEs
22/33

Is EnVAR also better than LETKF in real obs. data assimilation?



Local Rainfall on 18 July 2013
Real data assimilation 23/33

15–16JST 16–17JST 17–18JST 18–19JST 19–20JST 20–21JST

Analyzed precipitation

MSM (initial: 15JST)

MSM (initial: 18JST)

- Two precipitation systems were generated.

- Accurate forecast is difficult.

Dense observations are expected to improve forecasts

(even though the initial condition included rainfall)



Assimilated Dense Observations
Observation Elements Frequency
Surface
(JMA Surface observation 
and AMeDAS)

U, V, T every 10 minutes 

GNSS PWV every 10 minutes 
Radar Radial wind every 10 minutes Kashiwa, Haneda, Narita
Radiosonde U, V, T, RH every 3 hours Tsukuba, Urawa, 

Yokosuka, Ryofu Maru

Setting
Horizontal localization: 20m
Vertical localization: 0.1 lnP

(PWV is not localized vertically)
Multiplicative inflation parameter: 1.2
Observation error:

U, V: 1 m/s
T: 1 K
RH: 10%
PWV: 5 kg/m2

Radial wind: 3 m/s

24/33

:Sonde
:Radar7/18 

18JST

GNSS PWV (kg/m2)Surface wind (m/s)

7/18 
18JST

Real data assimilation



Flow of Assimilation Experiments

20130718 
18JST

20130718 
12JST

D
ow

nscaling

20130718 
09JST

Outer
Grid interval: 10 km
Grid number: 361x289x50
Ensemble size: 50
Analysis window: 3 hour 
(Operational Observations used in 
JMA Meso-DA every 30 minutes)

20130718 
03JST

Target:
Local rain near Tokyo
in 20130718 17-21JST

50 Members Boundary Condition every 30 minutes

15JST

09JST- Inner
Grid interval: 2 km
Grid number: 200x200x60
Ensemble size: 50
Analysis window: 1 hour

20130718 
06JST

20130718 
15JST

Boundary condition: JMA GSM Forecast + Weekly Ensemble Perturbation

20130716 
09JST-

16JST
17JST

18JST

Extended 
Forecast

: Ensemble Forecasts

: Analysis (LETKF or EnVAR)

Domain

25/33Real data assimilation



EnVAR EnVAR-NPWV
(w/o PWV data)

EnVAR-NSONDE
(w/o Sonde data)

LETKF NDA
(w/o any data)

Analyzed 
precipitation

Target of 
sensitivity

Domain to 
calculate 
the score

Comparison of 1-h Rainfall in 18-19 JST
26/33

18JST09JST 19JST

Good impacts of PWV and Sonde data assimilation

Real data assimilation



Are Fractions Skill Scores improved?
27/33

strong rain

High-
resolution 
rain position

15JST

09JST-
16JST

17JST
18JST

All four forecasts from EnVAR analyses are better than “NDA”

: number density of observed rainfall in i-th fraction
: number density of forecast rainfall in i-th fraction
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Real data assimilation



Impact of Dense Observations
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[EnVAR]–[NDA]

[EnVAR]–[EnVAR-NPWV]

[EnVAR]–[EnVAR-NSONDE]

Both PWV and radiosonde data 
could improve rainfall forecasts

EnVAR EnVAR-NPWV
(w/o PWV data)

EnVAR-NSONDE
(w/o Sonde data)

Rainfall in 18-19 JST

- PWV data greatly improved 
rainfall forecasts.

- Radiosonde data also improved 
weak rain forecasts.

Real data assimilation



EnVAR v.s. LETKF
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[EnVAR]–[LETKF]

[EnVAR]–[NDA]

In EnVAR, strong rainfall 
(> 15 mm/hr) forecasts 
are slightly better than 
that of LETKF

Time series of RMS of (O–A) and (O–F) 
of PWV in the forecast-analysis cycles

LETKF

Rainfall in 18-19 JST
EnVAR

- Difference between EnVAR and LETKF is small

Real data assimilation



Correlation between J and xn

Correlation between Rainfall and Initial States
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: 1-h rainfall (18–19JST) averaged in this area
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i, j : grid number, m: ensemble member

Low-level convergence is 
correlated to rainfall intensity

If winds point to the direction 
of vectors in this figure, 
rainfall becomes stronger

0–1 km water vapor and 
winds of EnVAR analysis 

Positive 
correlation of 
water vapor

Large gradient

Correlation between rainfall and 
0–1km water vapor and winds 
calculated by 51-member EnVAR

: variables in 0–1 km height at 18JST 

Convergence

Real data assimilation



Positive 
correlation of 
water vapor

Local front?

Convergence

Difference of Low-level variables
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[EnVAR]–[EnVAR-NPWV] [EnVAR]–[EnVAR-NSONDE]

[EnVAR]–[LETKF]

0–1 km water vapor and 
winds of EnVAR analysis 

Correlation between rainfall and 
0–1km water vapor and winds 
calculated by 51-member EnVAR

Difference of 0–1km 
water vapor and winds 

Positive 
increment of 
water vapor

Convergence

Convergence

Increment of low-level 
water vapor and 
convergence makes 
rainfall stronger

Real data assimilation



Summary of Real Data Assimilation
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We assimilated dense obs. for the local rainfall near Tokyo

• Impact of dense PWV and Radiosonde obs.
• PWV improved rainfall forecast through correcting low-level water vapor
• Sonde obs. improved rainfall forecast through correcting low-level winds

• Comparison between LETKF and EnVAR
• EnVAR can make the analysis which is closer to obs. than LETKF
• Improvement of rainfall forecast by using EnVAR is small

• Correlation to rainfall based on ensemble forecasts
• Low-level water vapor and convergence made local rainfall stronger

Are these impacts general? Verification in longer period requires



Summary (EnVAR v.s. LETKF)
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• Formulation
• Non-linear observation operator is more strictly treated in EnVAR
• Observation localization of EnVAR is same as background localization

(“severer” than localization of LETKF)

• OSSEs
• Analysis of this EnVAR alization are more accurate than LETKF because 

globally defined cost function is minimized

• Real observation data assimilation
• PWV assimilation in both EnVAR and LETKF improved rainfall forecast
• EnVAR analysis was closer to obs. than LETKF
• Improvement of rainfall forecast by using EnVAR was small in this case

Our research was supported in part by “Strategic Program for Innovative Research (SPIRE), Field 3” (proposal
number: hp140220 and hp150214) and “Tokyo Metropolitan Area Convection Study for Extreme Weather
Resilient Cities (TOMACS)”. SPEEDY-LETKF (https://code.google.com/p/miyoshi/) and the source code
developed by Numerical Prediction Division in JMA are used in this study. GNSS data were provided from the 2nd
Laboratory, Meteorological Satellite and Observation System Research Department in MRI. Radiosonde
observations were conducted as a part of TOMACS program. The other observation data were from JMA.


