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Introduction
• JMA has been operating NWP models for weather 

forecasting and disaster prevention information 
providing.

• To make the initial condition of NWP model, JMA 
assimilates many observation data. Especially, 
satellite data are most important data for 
improvement of the initial condition.

• Impact of GPM/DPR data assimilation at JMA
– GPM/DPR was started to assimilate operationally 

in March 2016.
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JAXA HP（http://www.satnavi.jaxa.jp/project/gpm/）より

GPM core satellite
Global Satellite Mapping of Precipitation Global (GPM core)  
• Dual-frequency Precipitation Radar (DPR)

– Japan Aerospace Exploration Agency（JAXA）
– National Institute of Information and Communications Technology（NICT）
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The DPR consists of a Ku-band precipitation radar (KuPR) 
and a Ka-band precipitation radar (KaPR).

GPM microwave imager

http://www.satnavi.jaxa.jp/project/gpm/
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Current NWP models of JMA 
In Operation In Test Operation (*)

Global Spectral
Model
GSM

Meso-Scale 
Model
MSM

Local Forecast Model 
LFM

One-week
Ensemble
WEPS

Typhoon
Ensemble
TEPS

Meso-scale
Ensemble

MEPS

objectives
Short- and Medium-

range
forecast

Disaster reduction
Aviation forecast

Aviation forecast
Disaster reduction

One-week 
forecast

Typhoon 
forecast

Uncertainty and 
probabilistic 

information of MSM

Forecast 
domain

Global
Japan and its 
surroundings

(4080km x 3300km)

Japan and its 
surroundings

(3160km x 2600km)

Global
Japan and its 
surroundings

(4080km x 3300km)

Horizontal 
resolution TL959(0.1875 deg) 5km 2km TL479(0.375 deg) 5km

Vertical
levels / Top

100
0.01 hPa

48+2
21.8km

58
20.2km

60
0.1 hPa

48+2
21.8km

Forecast
Hours
(Initial 
time)

84 hours
(00, 06, 18 UTC)

264 hours
(12 UTC)

39 hours
(00, 03, 06, 09, 12, 
15, 18, 21 UTC)

9 hours
(00-23 UTC hourly)

264 h
(00, 12 UTC)
27 members

132 h
(00, 06, 12, 
18 UTC)

25 members

39h 11 members

Initial 
Condition

Global Analysis
(4D-Var)

Meso-scale Analysis
(4D-Var)

Local Analysis 
(3D-Var)

Global Analysis
with ensemble 

perturbations (SV)

Meso-scale Analysis
with ensemble 

perturbations (SV) 
6

Deterministic

(* 予報部内での利用目的のため。外部にデータは提供されていない。）



Main Operational Forecast model

Local NWP System
Local Forecast model (LFM)

Forecast Model: ASUCA
Horizontal resolution: 2 km

Local Analysis (LA):3D-Var
Analysis cycle
Data assimilation system: ASUCA-Var

Global NWP System
Global Spectral Model (GSM)

Horizontal resolution:TL959(0.1875 deg)
Global Analysis (GA): 4D-Var

Meso-scale NWP System
Meso-scale model (MSM)

Forecast Model: JMA-NHM
Horizontal resolution: 5 km

Meso Analysis (MA): 4D-Var
Data assimilation system: JNoVA
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Meso-scale NWP System
• Main purpose: Providing disaster prevention information

– Accuracy of precipitation forecast is of very importance.
– Hydrometeors in initial condition must be improved for forecast 

improvement.

JMA Outline NWP 2013 

• Cloud microphysics process
– 3-ice 6-class bulk scheme
– Prognostic hydrometeors 

• Water vapor, cloud, rain, ice, snow and 
graupel

– Reflectivity calculation needs these 
hydrometeors in data assimilation 
system.
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Coverage map of assimilated observation 
in Meso-scale NWP system
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Recent updates: GPM/DPR, GPM/GMI, GNSSRO, Himawari-8/AMV, Himawari-8/CSR are started to 
assimilate operationally in March 2016.

GPM/DPR

GNSSROHimawari-8/AMV

Himawari-8/CSR GPM/GMI



GPM Data Coverage during 24-hour
• GMI

– Width: 800 km

• KuPR(13.6 GHz)
– Width: 245 km
– Vertical resolution: 250 m

• KaPR MS/HS*(35.5 GHz)
– Width: 125 km
– Vertical resolution: 250 m/500 m
* High sensibity mode

• KuPR and KaPR are assimilated 
by meso-scale analysis about 2 or 3 in a day.
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-> enlarged
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 Beam bending
Refraction index 

The Earth curvature

 Scattering cross-section
Rayleigh (or T-matrix)








 
T
ep

T
N 48106.77

 Beam shape
Gauss-Hermite
quadrature, 
quadrature order n = 5

 Beam blockage by topography

 Effective hydrometeors
Rain, Snow and graupel.

 Virtual radar site
Ex. Tokyo
λ=5.7cm
Resolution=500mX(360/512)°
Number of elevation =28

Ground-based Radar Simulator in JMA
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• It was developed for weather radar assimilation.



Space-borne radar simulator
• Simplification for reducing computation cost

– Slant beam path, beam width and 
beam bending
• Horizontal resolution of MSM is 5km,  

it is coarse-grid about beam simulation. 
• Small Impact for DA

– Attenuation
• Corrected Z factor products has been used.

• For computing efficiency
– Z factor Table is prepared at offline.
– In online, Z factor is given by Look up table 

method
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Space-borne radar simulator
• Reflectivity calculation

– Effective particle: Rain, snow and graupel
• Cloud water and cloud ice are ignored.

– Size distribution: Negative exponential dist.
• Intercept parameter is fixed 

– Particle shape: sphere
– Scattering calculation: Lorenz-Mie theory

• Single scattering

– Dielectric constant
• Water: Debye
• Snow: Boren and Batton (1982)

   
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D

D xbxx dDDND
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dBZ
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• Slope parameter:

• Size distribution:

• Intercept parameter:
XXX NN 0
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Space-borne radar simulator
• Bias of simulated Z factor exists  

in ice phase (Eito and Aonashi
2009)
– Case of fixed intercept parameter

in 1-moment scheme
• Insufficient to describe size distribution
• Especially, error becomes large at large 

diameter.

– Case of unfixed intercept parameter 
in 2-moment scheme
• Better scheme to describe size 

distribution than 1-moment scheme

• Operational model
– 1-moment scheme 

-> Large bias caused by error of 
large size particle

KuPR > KaPR from large size particles.
Model bias affects simulated KuPR than KaPR.

Minimum diameter to maximum diameter

Dmin Dmax

|K
w

|^
2 

Zs
in

gl
e

sc
at
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Comparing the KuPR and KaPR



GPM/DPR data assimilation
• Assimilation method of KuPR and KaPR

– 1D+4D-Var method
• This method is same as ground based radar assimilation at 

JMA.(Ikuta and Honda, 2011)

1. RH is retrieved from observed reflectivity, simulated 
reflectivity and first-guess. (Caumont et al., 2010)

2. This retrieved RH is assimilated in the same way as 
conventional data by 4D-Var.

DATABASE(RH,Ze)

 b
PRH X

KaPRKuPR yy , RHŷ

RH estimation based on Bayesian theory

4D-Var
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Bayesian Theory 
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Best estimation

approximation

Bayes’ rule

Conditional probability

Marginal probability

Weight function

• RH estimation is based on Bayesian theory.

Weighted average



Maximum likelihood using kernel density estimation
 KaKux

yyxLx ,|maxargˆ 

Bayesian theory with Kernel density estimation
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1,|

Weighted average ≠ Maximum likelihood
→ Under estimation in case of non-Gaussian

P

x
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

Kernel function:

Our approach
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This method describes the likelihood function 
in a superposition of the Gaussian kernel.



Impact of
weighted average v.s. kernel density
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EXP: Weighted average EXP: Kernel density Observation

Precipitation forecast improved using the Kernel density approach 
than the weighted average approach.

Assimilation experiment using ground-based weather radar of JMA



Observation vector

 )()1( mb xxX 

)1(x )2(x )3(x

(.)x (.)x (.)x

(.)x (.)x (.)x

Pseudo ensemble vector

KuPR,KaPR profile

Schur production of the observation 
localization

State vector 
Potential temperature
Pressure
Water vapor
Rain
Snow
Graupel




























g

s

r

v

q
q
q
q
p
θ

x

Observation operator

Td ,L

Estimation of relative humidity profiles
The RH profiles are updated using reflectivity observation profiles.
• The set of column in the first-guess are regarded as the pseudo ensemble members.
• Making a database of the relation between RH and Z.
• The RH profiles are estimated by based on Bayes’ theorem with kernel density estimation.

20

 xDPRH

Zy 



Model probability density

DATABASE
Maximum likelihood using Kernel density estimation

4DVar

  yxHd 

Adaptive bias correction

 KaKu yyxLRH ,|maxarg

KaPRKuPR yy ,

Bayesian theory with Kernel density estimation

       



   dyxHRdyxHxyP T 1

2
1exp|

Altitude 3000m

Altitude 4000m

Likelihood Function

 xHDPR
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Bias is recalculated every analysis.

P(x|y) is redefined using <d>.

Correlation of between B 
and R is neglected.

Database is made by model columns.



DPR assimilation in Meso Analysis
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KuPR, KaPR KuPR, KaPR KuPR, KaPR KuPR, KaPR

RH 
profiles

RH 
profiles

RH 
profilesRetrieval

4DVAR

-180 min -120 min -60 min 0 min

MSM forecast

FWD

AD

Initial time 

Assimilation window (3-hour)

• The observation are distributed to 4 time-slots by rounding off the observation time to hours.
• The observation within the period from 3.5 h before to 0.5 h after the initial time are assimilated.

First time slot DPR is not 
used to avoid spin up.

Retrieved RH is assimilated each time slot



Quality Control [Clutter]
Altitude: 1250 m Altitude: 6250 m

Main lobe clutter Side lobe clutter

Side lobe clutter
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Ref. Tagawa et al. （2007)

Altitude 

Beam scan angle 

Side lobe clutter

Clutter free

Main lobe clutter

20km

10km

• Value of both edge on the path is main 
lobe clutter.

• Two lines on the path are side lobe clutter.
• For DA, clutter must be removed.



Quality Control [Clutter]
KuPR after QC（Observation) KuPR（Observation）KuPR (Simulation)

Removed noise using clutter-flag 
and precipitation-flag 

Comparisons between model and DPR using Contoured Frequency with Altitude Diagrams (CFADs) 
CFADs: > 15dBZ

Main lobe clutter

Side lobe clutter 
and noise
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Quality Control and Bias Correction
• Removal of clutter is very important.

– flagEcho（by JAXA)  can be removed noise almost of all.

• Small noise handling
– Threshold is defined 15 dBZ.

• Bias of simulated reflectivity handling
– Bias is removed little by adaptive bias correction.
– Ice-phase data cannot be assimilated because weak rain ( < 1 mm/3h) forecast become 

negative bias.  
KuPR simulation after BC KuPR observaion after QCKuPR simulation
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Case study of DPR assimilation
GPM/DPR KuPR First Guess of MSM

dBZ

Typhoon No.15 Goni
Lowest central pressure is 930 hPa.
Maximum instantaneous wind speed 71.0 m/s was observed on ISHIGAKI island.

ISHIGAKI island
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Case study of DPR assimilation

Retrieved RH from KuPR and KaPR.
Only liquid phase data is used, because 
the ice phase reflectivity has model bias.
We can assimilate 3-dimensional 
atmospheric information about moisture !

Difference of TPW increment between 
EXP w/o DPR and EXP w/ DPR.

Impact of DPR assimilation on initial timeAssimilated retrieved RH

HumidifyDry up
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Forecast time 6-hour
Impact of GPM/DPR assimilation

Exp. without GPM/DPR
IR1 Simulation

Exp. with GPM/DPR
IR1 Simulation Observation(Himawari-8)

Central Pressure : 930 hPaCentral Pressure : 954 hPaCentral Pressure : 961 hPa

GPM/DPR assimilation reproduce meso-scale convective phenomena.

28



OUTLINE

1. Introduction
2. Operational NWP system at JMA
3. DPR data assimilation

Radar simulator
1D+4DVAR

Relative humidity estimation

Quality control

4. Performance evaluation 
5. Summary

29



Performance evaluation test
• Meso-scale NWP system

– Control experiment:  with DPR
– Test experiment:  without DPR

• In both experiments, GMI is not assimilated.

• Experiment periods
– SUMMER: 7 AUG 2015～11 Sep 2015
– WINTER: 10 DEC 2014 ～ 14 DEC 2015 
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Equitable Threat Score and Bias Score

Error bar: 95% confidence interval  by block-bootstrap sampling (Wilks 1997)

Equitable Threat  Score Bias Score
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Equitable Threat  Score

Bias Score

1mm/3h 10mm/3h 30mm/3h 50mm/3h

1mm/3h 10mm/3h 30mm/3h 50mm/3h
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Sonde verification, Lead time: 0-hour
ME RMSE
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RH

T

Z

Sonde verification, Lead time: 39-hour
ME RMSE

RH

T

Z



Verification results
• Summer experiment

– Precipitation
• ETS over the threshold 10mm/3h is significant 

improved.

– Sonde
• ME of T, Z, RH are improved in initial time.

• Winter experiment
– Very small impact of DPR

• Ice phase data are not used.
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Case of Heavy rainfall
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JMA HP: http://www.jma.go.jp/jma/press/1509/18f/20150918_gouumeimei.html

Radar-AMeDAS Precipitation Analysis recorded over 700 mm in 24 hour.

平成２７年９月関東・東北豪雨

http://www.jma.go.jp/jma/press/1509/18f/20150918_gouumeimei.html
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Case of Heavy rainfall
Init:2015/09/08 00UTC MSM forecast range

2015/09/07 2015/09/08

2015/09/07 15UTC

2015/09/08 00UTC

Effect of DPR observation 
assimilation in to this initial time 
is carried over by the analysis-
forecast cycle. 
DPR observation that could 
contribute to the improvement of 
heavy rain case, be assimilated in 
the following initial time.
■ INIT1: 2015/09/07 15UTC
■ INIT2: 2015/09/08 00UTC

00UTC

03UTC

06UTC

09UTC

12UTC

21UTC

15UTC

18UTC

日光 今市

INIT1

INIT2
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Case 1 INIT1: 2015-09-07 15UTC

Control Test Observation
Lead time: 3-hour

Impact on the rainfall in the south of 
the sea in the Kanto and Typhoon 
No. 18. This effect will be taken over 
to subsequent analysis .

GPM/DPR KuPR

In data assimilation window
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GPM/DPR KuPR

Lead time: 3-hour

Improvement of precipitation 
forecast on the DPR path.

Control Test Observation
In data assimilation window

Case 2 INIT2: 2015-09-08 00UTC
lead time: 3-hour
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The effect of past assimilation has been 
taken over in the analysis forecast cycle.
→ Water vapor in south of Japan has already 
improved by past analysis(INIT1). Then, in 
lead time 33h,  reproducibility of 
precipitation is improved also.

GPM/DPR KuPR

Lead time: 33-hour

Control Test Observation
In data assimilation window

Case 2 INIT2: 2015-09-08 00UTC
lead time: 33-hour
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Summary
• Operational assimilation of GPM/DPR started 

in March 2016 at JMA.
• Benefit of GPM/DPR data assimilation 

– 3-D information of GPM/DPR is valuable and 
important data to make initial condition of  the 
meso-scale model.

– GPM/DPR assimilation improved the forecast of 
meso-scale  convection around Typhoon.

• GPM data will be indispensable data in JMA 
NWP system.
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Next step of DPR assimilation

Indirect assimilation
using retrieved RH profiles

in traditional 4DVAR

Direct assimilation
using reflectivity (KuPR, KaPR) profiles

in new Hybrid-4DVAR
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