Assimilating All-Sky Himawari-8 Satellite Infrared Radiances: Preliminary Case Studies Takumi Honda RIKEN AICS

Data Assimilation Seminar, 21 Dec. 2016, RIKEN AICS, Kobe, Japan

Contents

- Introduction
- Implementation of obsope
- Typhoon Soudelor (2015)
- Kanto-Tohoku heavy rainfall
- Summary

Why geostationary satellite radiances?

- High spatiotemporal coverage
 - Conventional observations are generally limited over the ocean.

Himawari-8: A new generation satellite

Providing observation "Big Data" Similar to GOES-R

- High-spatiotemporal resolution radiance obs in 16 bands.

IR

4

Number of bands

10

Infrared (IR) radiance assimilation

is expected to improve moisture, clouds, and wind fields (Otkin 2012JGR).

- Issues in all-sky assimilation
 - Strong nonlinearity
 - Non-Gaussianity

Geer and Bauer (2011QJRMS) Okamoto et al. (2014QJRMS) Harnisch et al. (2016QJRMS)

4/38

Promises shown by Zhang et al. (2016)

Scope of this study

- To implement obsope for Him8 obs into SCALE-LETKF
- To assimilate real Him8 obs for several cases (tropical cyclone and heavy rainfall)
- Some important topics (e.g., observation errors and bias correction) are beyond the scope.

Contents

- Introduction
- Implementation of obsope
- Typhoon Soudelor (2015)
- Kanto-Tohoku heavy rainfall
- Summary

The SCALE-LETKF system

Initial State SCALE (Nishizawa et al. 2015) SCA Simulated State LETKF Sim-to-Obs conversion Observations Sim-minus-Obs Broad-sense DA Flowchart of SCALE-LETKF Himawari-8

Bessho et al. (2016)

Observation operator

Model variables (*t*, q_v , q_c ...)

Forward RTM (RTTOV 11.2)

Band #	Wave length (µm)	Supposed Uses	
7	3.9	moisture at lower levels	
8	6.2	moisture at mid / upper levels	
9	6.9	moisture at mid levels	Assimilated
10	7.3	moisture at mid levels	
11	8.6	SO ₂	
12	9.6	O ₃	
13	10.4	cloud imagery / cloud top	
14	11.2	cloud imagery / SST	
15	12.4	cloud imagery / SST	
16	13.3	cloud top	

http://www.jmanet.go.jp/msc/ja/ Brightness Temp.

Clear-sky Weighting Function

Contents

- Introduction
- Implementation of obsope
- Typhoon Soudelor (2015)
- Kanto-Tohoku heavy rainfall
- Summary

Typhoon Soudelor (2015)

- The strongest western North Pacific TC in 2015.
- Himawari-8 observed successfully!

Experimental design

	D1 (15 km mesh)	D2 (3 km mesh)
Obs	PREPBUFR (6 hr)	PREPBUFR (10 min), Best Track TC vital (MSLP & position, 1hr), Himawari-8 (10 min)

First step analysis

Analysis

Himawari-8

135E 138E 141E 144E 147E 150E 153E

135E 138E 141E 144E 147E 150E 153E

135E 138E 141E 144E 147E 150E 153E

Band 9 : 0.05° x0.05° Obs err: 5 K

13 /38

First trial failed

After 12 cycles (2hr)

Noisy SLP analysis

Remedies

Applying large obs err in the first 12 cycles (2 hr)

Horizontal obs err correlation

Estimated horizontal observation error correlation for Himawari-8 observation (band 9).

Analysis (Him8 radiance)

Horizontal maps of Himawari-8 brightness temperature (K) of band 9 (6.9 $\mu m).$

Analysis (Outer rainband)

Fig. 4. (a),(b) Mixing ratio of hydrometeors (sum of cloud water, rain, cloud ice, snow,

and graupel; $g kg^{-1}$) at Z = 7.2 km of the analysis ensemble mean in (a) NoHim8 and (b) Him8 at 1800 UTC 2 August. (c) Microwave satellite imagery (91h GHz on the Special Sensor Microwave Imager/Sounder (SSMIS) F16) at 1838 UTC 2 August, which is available online from the Naval Research Laboratory–Monterey at http://www.nrlmry.navy.mil/TC.html.

Analysis (TC center)

Colors: θ (K), black contours: tangential wind (m s⁻¹), white contours: radial wind (m s⁻¹)

Azimuthally averaged structure of Typhoon Soudelor (2014) in (a) Him8 and (b) NoHim8, respectively.

TC intensity forecasts

Time series of (a) minimum sea level pressure (MSLP; hPa) and (b) maximum 10-m wind speed (m s⁻¹) of Soudelor.

Interpretation of the intensity forecasts

- Inner/warm cores
 - Zhang and Chen (2012GRL), Chen and Zhang (2013JAS)
 - Ohno et al. (2016JAS)
 - Steeper eyewall slopes
 - Miyamoto and Takemi (2015JAS)
 - Larger Rossby numbers

• Outer rainband

– May and Holland (1999JAS)

• Track (SST) difference?

 $\operatorname{Ro} \equiv v_m / (\operatorname{RMW} \cdot f)$

v_m: Maximum tangential velocity*f*: Coriolis parameter

TC track forecasts

Horizontal map of the analysis and forecast TC tracks.

Additional experiments

Name≁	Himawari-8	Horizontal/vertical localization
	DA⊷	scale for Himawari-8 observation∢
NoHim8 ↩	No∢⊐	_ € []]
Him8-CTRL₊	Yes⊷	50 km/0.5 ln <i>p</i> ◀
Him8-v0.3 ⊷	Yes⊷	50 km/0.3 ln <i>p</i>
Him8-H20⊷	Yes⊷	20 km/0.5 ln <i>p</i> ◄

TC intensity forecasts

Time series of (a) minimum sea level pressure (MSLP; hPa) and (b) maximum 10-m wind speed (m s⁻¹) of Soudelor.

Him8-V0.3 is worse than Him8-CTRL(V0.5).

TC track forecasts

Horizontal map of the analysis and forecast TC tracks.

Him8-H20 is slightly better than Him8-CTRL(H20).

Correlation structure

Summary of the TC case

• We successfully assimilated all-sky Himawari-8 brightness temperature observation.

 The TC structure (both outer rainband and inner core) analysis and intensity forecasts were improved.

Contents

- Introduction
- Implementation of obsope
- Typhoon Soudelor (2015)
- Kanto-Tohoku heavy rainfall
- Summary

Goal

 To examine the impact of all-sky Himawari-8 DA on analyses and forecasts of Kanto-Tohoku heavy rainfall in 2015.

9/10 00UTC (After Tenki)

Ensemble size: 50 members

	D1 (18 km mesh)	D2 (6 km mesh)		
Obs	PREPBUFR (6 h)	NoHim8	Him8	
		PREPBUFR (10 min)	PREPBUFR (10 min),	
			(10 min)	31 /38

Analysis (Him8 radiance)

Directly assimilated band (B09, 6.9µm)

Analysis (Him8 radiance)

Not directly assimilated band (B14 , $11.2\mu m$)

34 /38

Precipitation forecast

Initialized at 9/9 00UTC (ensemble mean)

Precipitation forecast

Initialized at 9/9 00UTC (ensemble mean)

Summary of Kanto-Tohoku rainfall

- We assimilated all-sky Himawari-8 obs with the SCALE-LETKF system.
- Moisture transport was improved.
- Precipitation forecast was greatly improved due to Him8 data.

Future works

• Dynamic observation error (Okamoto et al. 2014QJRMS; Harnisch et al., 2016QJRMS)

• Bias correction

• Vertical localization in cloudy sky