DARK EMULATOR COSMIC LARGE-SCALE STRUCTURES AND PARAMETER ESTIMATION TAKAHIRO NISHIMICHI (KAVLI IPMU, JST CREST)

Kavli IPMU

Takahiro Nishimichi* Masahiro Takada Naoki Yoshida Taira Oogi*

U. Tokyo Ken Osato* Masamune Oguri NAOJ Masato Shirasaki*

Takashi Hamana

Hirosaki U. Ryuichi Takahashi*

2016/12/22; data assimilation seminar @ RIKEN

BACKGROUND

COSMOLOGY: CURRENT STATUS

- All sorts of observations can be explained by the standard model with only 6 free parameters
 - and they are very precisely determined
 - *Dark components* play the major role in the current Universe

Parameter	68 % limits
$\Omega_{\rm b}h^2$	0.02225 ± 0.00016
$\Omega_{\rm c}h^2$	0.1198 ± 0.0015
100 <i>θ</i> _{MC}	1.04077 ± 0.00032
τ	0.079 ± 0.017
$\ln(10^{10}A_{\rm s})$	3.094 ± 0.034
<i>n</i> _s	0.9645 ± 0.0049
H_0	67.27 ± 0.66
Ω_{Λ}	0.6844 ± 0.0091
Age/Gyr	13.813 ± 0.026
Planck 2015 cosmological params.	

baryon density dark matter density

cosmic geometry (dark energy encoded here) optical depth

} 2 params for cosmic fluctuations

WHAT IS DARK ENERGY? WHAT IS DARK MATTER?

DARK MATTER

- No light emission but has mass (i.e., gravitational interaction)
- indirectly observable through gravitational lensing
 - light path bent by gravity

bullet cluster

- Chandra X-ray data vs lensing data
- small cluster coming from the left and past to the right

z 0.3

^{1E 0657–56} gas distribution from X-ray

DARK ENERGY

60W

Riess (1969-) Schmidt (1967-) High-Z Supernova Search Team

Nobel Physics Prize in 2011, shared with Perlmutter (Supernova Cosmology Project)

Something is accelerating the expansion!

PROBLEM SETTINGS

OBSERVABLE UNIVERSE

©NASA/WMAP

COSMIC RANDOM FIELDS

- Assume cosmological principle
 - no special place
 - homogeneity + isotropy (in a statistical sense)
- consider the "fluctuations":

$$\delta_A(\mathbf{x},t) = [A(\mathbf{x},t) - A(t)]/A(t)$$

- $P[\delta_A(x_1)] = P[\delta_A(x_2)] = ... = P[\delta_A(x_N)]$
- $\mathsf{P}[\delta_{\mathsf{A}}(\mathsf{X}_1), \delta_{\mathsf{A}}(\mathsf{X}_2)] \neq \mathsf{P}[\delta_{\mathsf{A}}(\mathsf{X}_1)] \mathsf{P}[\delta_{\mathsf{A}}(\mathsf{X}_2)]$

<...>: ensemble average equivalent to spatial average

correlation between positions !

SDSS III DR12

Do we have a galaxy here?

Given the presence of a galaxy at 1, do we have another at 2?

GAUSSIAN RANDOM FIELD AS THE INITIAL CONDITION

Gaussianity

consider N-point correlators:

 $\langle \delta_A(\mathbf{x}_1) \delta_A(\mathbf{x}_2) \dots \delta_A(\mathbf{x}_N) \rangle_c = 0, \quad \text{for} \quad N \ge 3$

The 2-point correlation function determines everything:

$$\langle \delta_A(\mathbf{x}_1) \delta_A(\mathbf{x}_2) \rangle = \xi_A(\mathbf{x}_1, \mathbf{x}_2) = \xi_A(|\mathbf{x}_1 - \mathbf{x}_2|)$$

statistical isotropy

- or equivalently, the *power spectrum* in Fourier space or in harmonic space
- In terms of joint probability density functional, this gives

$$P[\delta_A] \propto \exp\left[-\frac{1}{2} \int \mathrm{d}^3 x \int \mathrm{d}^3 x' \delta_A(\mathbf{x}) \xi_A^{-1}(\mathbf{x}, \mathbf{x}') \delta_A(\mathbf{x}')\right]$$

Gaussianity<0.1%)

EVOLUTION OF COSMIC FLUCTUATIONS

- Gravitational instability is the driver that forms rich cosmic structures
 - tiny primordial fluctuations seen in the CMB are the seed for the nearby structures
 - Amplified by gravitational instability over the cosmic time
 - Any astronomical structures (stars, galaxies, groups, clusters) originated from this!

EVOLUTION OF COSMIC FLUCTUATIONS (CONTD)

We do not have the information on the initial condition sufficient for full determination of the *particular random realization* in which we live!

LATE-TIME OBSERVABLES

TARGET OBSERVABLES

Galaxy clustering in point process in 3D space

weak gravitational lensing projected mass distribution on 2D plane

TARGET OBSERVABLES

Galaxy clustering in point process in 3D space

- Basic quantity = Positions
- Additional quantities
 - characteristic of galaxies
 - Iuminosity, color, morphology ...

We do not know the relation between the mass density field and galaxy density field! (galaxy bias uncertainty)

galaxy power spectra

Tegmark+'04

TARGET OBSERVABLES

simulation by T. Hamana @ NAOJ ticks = expected orientation of galaxies

direct observable

- shape of background galaxies
- accessible information
 - foreground projected mass map
 - including dark matter

weal gravitational lensing projected mass distribution on 2D plane

WHAT WE CAN AND CANNOT PREDICT

gravity only simulation

hydrodynamical simulations with various processes

Yoshikawa+'05

2D SLICE OF COSMIC STRUCTURE

2D SLICE OF COSMIC STRUCTURE

Need an accurate theoretical template as a function of the mass of halos

GALAXY-GALAXY LENSING

e.g., Oguri & Takada '11

stack the images of background galaxies centered at the foreground cluster positions

The cross-correlation signal of the two observables

$$\Sigma(R) = \overline{
ho} \int \left[1 + \xi_{
m gm} \left(\sqrt{R^2 + \Pi^2}
ight)
ight] d\Pi$$

Break the degeneracy btwn galaxy bias and cosmology!

DARK EMULATORS

OBJECTIVE

- Numerical cosmology with large-scale structure data
 - direct confrontation of simulations to observations for model/parameter estimation
- Accurate determination of basic statistical quantities with N-body simulations
 - cosmology dependence
 - machine-learning based approach
- handy numerical codes for statistical analyses
 - rapid emulator written in python

THE SIMULATION DESIGN IN HIGH DIMENSION SPACE

EFFICIENT SAMPLING SCHEME IN MULTI-DIMENSIONAL SPACE

Latin hypercube designs

- each sample point is the only one in both the row and the column
- Such a design is not unique (ex. diagonal design)
- Additional constraint: maxi-min distance design
 - maximize the sum of the distances of nearest neighbors

cosmological parameter 2

cosmological parameter 1

EFFICIENT SAMPLING SCHEME (CONTD)

"Sliced" LHDs

- a hierarchical design proposed by Ba, Brenneman&Myers'15
- 100 sampling points in total in a LHD
- Each of the 20 points are LHDs (e.g., red/ blue points)
- Multiple purpose for different slices
 - for instance
 - 20 training set
 - 20 validation set

$ω_b = Ω_b h^2$: ±5%	In(10 ¹⁰ A₅): ±20%
$ω_c = Ω_c h^2$: ±10%	n₅: ±5%
Ω _Λ : ±20%	w: ±20%

GAUSSIAN PROCESS

✓ A machine-learning technique that interpolates in functional space

- ✓ non-parametric bayesian inference
- ✓ good scaling in multi-D space
- ✓ Learn unknown "complexity" of the function from the data themselves
 - Characterization by the covariance function with a small number of hyper parameters θ
 - ✓ Estimate θ from data (x_i, t_i)

ex.
$$C(\mathbf{x}, \mathbf{x}'; \boldsymbol{\theta}) = \theta_1 \exp\left[-\frac{1}{2}\sum_{i=1}^{I} \frac{(x_i - x'_i)^2}{r_i^2}\right] + \theta_2.$$

Given new x_{N+1} predict t_{N+1}
 Use (x_i, t_i) and θ and solve another bayesian inference problem

$$P(t_{N+1} | \mathbf{t}_N) \propto \exp \left[-\frac{1}{2} \left[\mathbf{t}_N \ t_{N+1} \right] \mathbf{C}_{N+1}^{-1} \left[\frac{\mathbf{t}_N}{t_{N+1}} \right] \right]$$

answer:
$$\hat{t}_{N+1} = \mathbf{k}^T \mathbf{C}_N^{-1} \mathbf{t}_N$$
$$\sigma_{\hat{t}_{N+1}}^2 = \kappa - \mathbf{k}^T \mathbf{C}_N^{-1} \mathbf{k}.$$

 t_{N+1}

SIMULATION SPEC

- ✓ N of particles: 2048³
- ✓ box size: 1, 2 and 4 h⁻¹Gpc
 - resolve a 10^{12} h⁻¹M_{solar} halo with ~100 particles in the high resolution runs
- ✓ 2nd-order Lagrangian PT initial condition @ z_{in}=59
 - (vary slightly for different cosmologiesto keep the RMS displacement about25% of the inter-particle separation)
- ✓ Tree-PM force by L-Gadget2 (w/ 4096³ PM mesh)
- ✓ 21 outputs in $0 \le z \le 1.5$

(equispaced in linear growth factor)

- ✓ Data compression (256GB -> 48GB par snapshot)
 - ✓ positions -> displacement (16 bits par dimension; accuracy ~1h⁻¹kpc)
 - velocity: discard after halo identification
 - ID: rearrange the order of particles by ID and then discard
 - ✓ consuming ~200TB (~observational data)

SIMULATION PIPELINE

identify and store more than **10** billion halos in total

SIMULATION STATUS

122 sims are available in total

fiducial model

- PLANCK15 flat ACDM
- 24+1 realizations done
- test of statistical error
- tests/development of analysis codes

varied cosmology

high resolution runs

- g-g lensing
- 2 initial conditions
 - fixed random phase (20 done red)
 - varied random phase (40 done red+blue)

low resolution runs

- calibration of largest scales
- 37 realizations done
- in progress (60 white points)

EMULATOR DESIGN

PLANCK 2015

cparam = np.array([[0.02225,0.1198,0.6844,3.094,0.9645,-1]]) set_cosmo(cparam) give your cosmological params ~5s set_redshift(z) and redshifts ~600ms; HMF GP called inside lognh = mh_to_logdens(Mmin) convert M_min to n_h ~50µs plt.loglog(Rplot,get_dsigma(ascale, lognh, Rplot),lw=2,color='red')

Evaluate !! ~1ms

エミュレータ

GAUSSIAN PROCESS ACCURACY

training with 20 models (red) **validation** with 20 other models (blue)

SUMMARY

- Modeling the halo mass function and galaxy-galaxy lensing signal
 - Latin hypercube design + fitting/GP/spline
 - handy emulator in python almost ready
 - accuracy test undergoing, roughly 2-3% accuracy
- To come
 - Apply to real data and extract cosmological information
 - RSD emulator to combine g-g lensing and 3D clustering
 - further extension under discussion
 - e.g., non-flat, w0-wa cosmologies

MCMC cosmology with N-body emulators R. Murata

