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BACKGROUND



COSMOLOGY: CURRENT STATUS

© ESA/PLANCK

dark energy

dark matter

ordinary matter

Planck 2015 cosmological params.

▸ All	sorts	of	observations	can	be	explained	
by	the	standard	model	with	only	6	free	
parameters	

▸ and	they	are	very	precisely	determined	

▸ Dark	components	play	the	major	role	in	the	
current	Universe

} 2 params for cosmic fluctuations

baryon density
dark matter density
cosmic geometry (dark energy encoded here)

optical depth

WHAT IS DARK ENERGY? 
WHAT IS DARK MATTER?



DARK MATTER
▸ No	light	emission	but	has	mass	(i.e.,	

gravitational	interaction)	

▸ indirectly	observable	through	
gravitational	lensing	

▸ light	path	bent	by	gravity	

▸ bullet	cluster	

▸ Chandra	X-ray	data	vs	lensing	data	

▸ small	cluster	coming	from	the	left	and	
past	to	the	right

gas distribution from X-ray mass distribution from lensing

 Clowe et al. 2006



DARK ENERGY

Something is accelerating the expansion!

Nobel Physics Prize in 2011, 
shared with Perlmutter 
(Supernova Cosmology Project)

Riess (1969-)

High-Z Supernova Search Team

Schmidt (1967-)
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FIG. 4.ÈMLCS SNe Ia Hubble diagram. The upper panel shows the
Hubble diagram for the low-redshift and high-redshift SNe Ia samples with
distances measured from the MLCS method (Riess et al. 1995, 1996a ;
Appendix of this paper). Overplotted are three cosmologies : ““ low ÏÏ and
““ high ÏÏ with and the best ⌫t for a Ñat cosmology,)
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which lacks spectroscopic classi⌫cation and a color measurement. The
average di†erence between the data and the prediction)
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is 0.25 mag.

The present data set has only a modest range of redshifts, so
we can only constrain speci⌫c cosmological models or
regions of parameter space to useful precision.()

M
, )")

The s2 statistic of is well suited for determin-equation (4)
ing the most likely values for the cosmological parameters

and as well as the con⌫dence intervals sur-H0, )
M

, )"rounding them. For constraining regions of parameter
space not bounded by contours of uniform con⌫dence (i.e.,
constant s2), we need to de⌫ne the probability density func-
tion (PDF) for the cosmological parameters. The PDF (p) of
these parameters given our distance moduli is derived from
the PDF of the distance moduli given our data from BayesÏs
theorem,
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where is our set of distance moduli Sincel0 (Lupton 1993).
we have no prior constraints on the cosmological param-
eters (besides the excluded regions) or on the data, we take
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SN Ia Hubble diagram. The upper panel shows theFIG. 5.È*m15(B)
Hubble diagram for the low-redshift and high-redshift SNe Ia samples with
distances measured from the template-⌫tting method parameterized by

(Hamuy et al. Overplotted are three cosmologies :*m15(B) 1995, 1996d).
““ low ÏÏ and ““ high ÏÏ with and the best ⌫t for a Ñat cosmology,)
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color measurement. The average di†erence between the data and the

prediction is 0.28 mag.)
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We assume each distance modulus is independent (aside
from systematic errors discussed in and normally dis-° 5)
tributed, so the PDF for the set of distance moduli given the
parameters is a product of Gaussians :
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Rewriting the product as a summation of the exponents and
combining with we haveequation (4),
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The product in front is a constant, so combining with
the PDF for the cosmological parametersequation (6)

yields the standard expression (Lupton 1993)
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PROBLEM SETTINGS



OBSERVABLE UNIVERSE
©NASA/WMAP

Subaru is observing here.

t = 0 t = now

cosmic microwave background 
(param. table determined by this)

large scale structure



3K COSMIC MICROWAVE BACKGROUND ANISOTROPY

slightly hotslightly cold
©ESA/PLANCK

@ t ~ 380 kyrs“initial condition” of our Universe
c.f., tnow ~ 14 Gyrs

7 hours old 30 years old

level of fluctuations ~ 10-5 (rms)



COSMIC RANDOM FIELDS
▸ Assume	cosmological	principle	
▸ no	special	place	

▸ homogeneity	+	isotropy	(in	a	statistical	sense)	

▸ consider	the	“fluctuations”:		

▸ P[δA(x1)]	=	P[δA(x2)]	=	…	=	P[δA(xN)]	

▸ P[δA(x1),	δA(x2)]	≠	P[δA(x1)]	P[δA(x2)]

hA(x, t)i = A(t)

position time

�A(x, t) = [A(x, t)�A(t)]/A(t)

x
What is the temperature here?

Do we have a galaxy here?

x

x

What is the correlation of the 
temperature at the 2 points? x

Given the presence of a galaxy 
at 1, do we have another at 2?

<…>: ensemble average 

equivalent to spatial average

correlation between positions !
SDSS III DR12



GAUSSIAN RANDOM FIELD AS THE INITIAL CONDITION
▸ Gaussianity	
▸ consider	N-point	correlators:	

▸ The	2-point	correlation	function	determines	everything:	

▸ or	equivalently,	the	power	spectrum	in	Fourier	space	or	in	harmonic	space	

▸ In	terms	of	joint	probability	density	functional,	this	gives

h�A(x1)�A(x2) . . . �A(xN )ic = 0, for N � 3

h�A(x1)�A(x2)i = ⇠A(x1,x2) = ⇠A(|x1 � x2|)

statistical isotropy
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STATISTICS OF CMB

1pt probability distribution
Planck 2015 
results. XIII.

“power spectrum”

spherical 
harmonics 
expansion

2pt statistics

Gaussian Random Field to a 
very good accuracy (non-

Gaussianity<0.1%)



EVOLUTION OF COSMIC FLUCTUATIONS
▸ Gravitational	instability	is	the	driver	that	

forms	rich	cosmic	structures	

▸ tiny	primordial	fluctuations	seen	in	the	CMB	are	
the	seed	for	the	nearby	structures	

▸ Amplified	by	gravitational	instability	over	the	
cosmic	time	

▸ Any	astronomical	structures	(stars,	galaxies,	
groups,	clusters)	originated	from	this!

PLANCK2015

SDSS III DR12

Gravity



EVOLUTION OF COSMIC FLUCTUATIONS (CONTD)
▸ We	do	not	have	the	information	on	the	initial	

condition	sufficient	for	full	determination	of	the	
particular	random	realization	in	which	we	live!

We are here.
x

CMB observation on this surface

CMB observation

parameter determination 
with uncertainties

pick one parameter set 
within the CMB constraint

generate a random 
realization of the initial 
fluctuations for the given 

parameters

solve the dynamics

measure statistics

compare with 
observations

observation simulation

? �2
red = 0.93 (0.95)



LATE-TIME OBSERVABLES



TARGET OBSERVABLES
weak gravitational lensing 

projected	mass	distribution	on	2D	plane

DES collaboration

Galaxy clustering 
in	point	process	in	3D	space

SDSS BOSS



▸ Basic	quantity	=	Positions	

▸ Additional	quantities	

▸ characteristic	of	galaxies	

▸ luminosity,	color,	morphology	…	

We	do	not	know	the	relation	between	
the	mass	density	field	and	galaxy	
density	field!	(galaxy	bias	uncertainty)

SDSS BOSS

Galaxy clustering 
in	point	process	in	3D	space

brighter

Tegmark+‘04

dimer

galaxy power 
spectra

TARGET OBSERVABLES



DES collaboration

▸ direct	observable	

▸ shape	of	background	galaxies	

▸ accessible	information	

▸ foreground	projected	mass	map	

▸ including	dark	matter

simulation by T. Hamana @ NAOJ

TARGET OBSERVABLES
weal gravitational lensing 

projected	mass	distribution	on	2D	plane

ticks = expected orientation of galaxies



WHAT WE CAN AND CANNOT PREDICT

Springel+‘05

Yoshikawa+‘05

http://perpendicularity.orgより

gravity only simulation hydrodynamical simulations with 
various processes



2D SLICE OF COSMIC STRUCTURE



2D SLICE OF COSMIC STRUCTURE

Need an accurate theoretical template as a function of the mass of halos



GALAXY-GALAXY LENSING
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© M. Takada

e.g., Oguri & Takada ‘11

 galaxies 
(with z)

stack the images of 
background galaxies 

centered at the 
foreground cluster 

positions

distance R from 
the center

The	cross-correlation	signal	
of	the	two	observables
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Break	the	degeneracy	btwn	
galaxy	bias	and	cosmology!



DARK EMULATORS



OBJECTIVE
▸ Numerical	cosmology	with	large-scale	

structure	data	

▸ direct	confrontation	of	simulations	to	
observations	for	model/parameter	
estimation	

▸ Accurate	determination	of	basic	
statistical	quantities	with	N-body	
simulations	

▸ cosmology	dependence	

▸ machine-learning	based	approach	

▸ handy	numerical	codes	for	statistical	
analyses	

▸ rapid	emulator	written	in	python

Theoretical predictions
cosmological 
parameter space

…

time, scale, …

ー   obs 
- - -  sim

Statistic X



THE SIMULATION DESIGN IN HIGH DIMENSION SPACE

： 
：

6D cosmological parameter space

Latin Hypercube (sample: 20+20+1+α) + Gaussian process

spline, PCA, model fitting

other dependence (time, distance, mass, …) Rapid	 prediction	 of	
the	 s tat i s t ics	 in	
multi-dimensional	
parameter	 space	 for	
MCMC	analyses

sampling: 21, 22, 12



EFFICIENT SAMPLING SCHEME IN MULTI-DIMENSIONAL SPACE

‣ Latin	hypercube	designs	
‣ each	sample	point	is	the	only	one	in	both	the	row	

and	the	column		

‣ Such	a	design	is	not	unique	(ex.	diagonal	design)	

‣ Additional	constraint:	maxi-min	distance	design	
‣ maximize	the	sum	of	the	distances	of	nearest	

neighbors
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‣ “Sliced”	LHDs	
‣ a	hierarchical	design	proposed	by	Ba,	

Brenneman&Myers’15	

‣ 100	sampling	points	in	total	in	a	LHD	

‣ Each	of	the	20	points	are	LHDs	(e.g.,	red/
blue	points)	

‣ Multiple	purpose	for	different	
slices	
‣ for	instance	

‣ 20	training	set	

‣ 20	validation	set
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EFFICIENT SAMPLING SCHEME (CONTD)



GAUSSIAN PROCESS

✓A machine-learning technique that 
interpolates in functional space 

✓ non-parametric bayesian inference 

✓ good scaling in multi-D space 

✓Learn unknown “complexity” of the 
function from the data themselves 

✓ Characterization by the covariance 
function with a small number of hyper 
parameters θ 

✓ Estimate θ from data (xi, ti)
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matrix for the vector tN+1 ≡ (t1, . . . , tN+1)T. We define submatrices of CN+1

as follows:
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The posterior distribution (45.34) is given by

P (tN+1 | tN ) ∝ exp
[
−1

2
[
tN tN+1

]
C−1

N+1

[
tN

tN+1

]]
. (45.36)

We can evaluate the mean and standard deviation of the posterior distribution
of tN+1 by brute-force inversion of CN+1. There is a more elegant expression
for the predictive distribution, however, which is useful whenever predictions
are to be made at a number of new points on the basis of the data set of size
N . We can write C−1

N+1 in terms of CN and C−1
N using the partitioned inverse

equations (Barnett, 1979):

C−1
N+1 =

[
M m
mT m

]
(45.37)

where

m =
(
κ− kTC−1

N k
)−1 (45.38)

m = −m C−1
N k (45.39)

M = C−1
N +

1
m

mmT . (45.40)

When we substitute this matrix into equation (45.36) we find

P (tN+1 | tN ) =
1
Z

exp

[
−(tN+1 − t̂N+1)2

2σ2
t̂N+1

]
(45.41)

where

t̂N+1 = kTC−1
N tN (45.42)

σ2
t̂N+1

= κ− kTC−1
N k. (45.43)

The predictive mean at the new point is given by t̂N+1 and σt̂N+1
defines the

error bars on this prediction. Notice that we do not need to invert CN+1 in
order to make predictions at x(N+1). Only CN needs to be inverted. Thus
Gaussian processes allow one to implement a model with a number of basis
functions H much larger than the number of data points N , with the com-
putational requirement being of order N 3, independent of H. [We’ll discuss
ways of reducing this cost later.]

The predictions produced by a Gaussian process depend entirely on the
covariance matrix C. We now discuss the sorts of covariance functions one
might choose to define C, and how we can automate the selection of the
covariance function in response to data.

45.4 Examples of covariance functions

The only constraint on our choice of covariance function is that it must gen-
erate a non-negative-definite covariance matrix for any set of points {xn}N

n=1.
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Gaussian processes allow one to implement a model with a number of basis
functions H much larger than the number of data points N , with the com-
putational requirement being of order N 3, independent of H. [We’ll discuss
ways of reducing this cost later.]

The predictions produced by a Gaussian process depend entirely on the
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covariance function in response to data.

45.4 Examples of covariance functions

The only constraint on our choice of covariance function is that it must gen-
erate a non-negative-definite covariance matrix for any set of points {xn}N

n=1.

answer:
ex.

✓Given new xN+1 predict tN+1 
✓ Use (xi, ti) and θ and solve another 

bayesian inference problem

(x1, t1)

(x2, t2)

(x3, t3)
(x4, t4)

(x5, t5)
(x6, t6)

output

input



SIMULATION SPEC

✓ N of particles: 20483 

✓ box size: 1, 2 and 4 h-1Gpc  
resolve a 1012 h-1Msolar halo with ~100 
particles in the high resolution runs 

✓ 2nd-order Lagrangian PT 
initial condition @ zin=59  
(vary slightly for different cosmologies 
to keep the RMS displacement about 
25% of the inter-particle separation) 

✓ Tree-PM force by L-Gadget2  
(w/ 40963 PM mesh) 

✓ 21 outputs in 0 ≦ z ≦ 1.5  
(equispaced in linear growth factor) 

✓ Data compression (256GB -> 
48GB par snapshot) 

✓ positions -> displacement (16 bits 
par dimension; accuracy ~1h-1kpc) 

✓ velocity: discard after halo 
identification 

✓ ID: rearrange the order of particles 
by ID and then discard 

✓ consuming ~200TB  (~observational 
data)



SIMULATION PIPELINE

IC generator

Gadget2

FOF (on the fly)

subfind

rockstar

mass/profile 
determination

density estimate final catalog

prediction

on supercomputer 
(XC30 @NAOJ; using 648 CPU cores)

on analysis servers

object identification

create “universes”

time evolution
data analysis

locations of 
cluster-size halos

~2TB, 2+2days / 1 run

‣ identify	and	store	more	than	10	billion	halos	in	total



varied	cosmology	
high	resolution	runs	
‣ g-g	lensing		
‣ 2	initial	conditions	
‣ fixed	random	phase	(20	done	red)	
‣ varied	random	phase	(40	done	

red+blue)

fiducial	model	
‣ PLANCK15	flat	ΛCDM	
‣ 24+1	realizations	done	
‣ test	of	statistical	error	
‣ tests/development	of	analysis	

codes

122 sims are available in total

SIMULATION STATUS

low resolution runs 
‣ calibration of largest scales 
‣ 37 realizations done 
‣ in progress (60 white points)



EMULATOR DESIGN
cosmological parameters

σlin(R)

Halo mass function 
(3 params)

dn/dM(z)

ξlin(x)

bias functions: b(x, nh, z) 
(22 params)

cross correlation: 
ξhm(x, nh, z)

cross correlation: ξhm(x, >Mh, z)

galaxy-galaxy lensing observable: ΔΣ(R, >Mh, z)

compress	360	
results	of	linear	
Boltzmann	solver	
with	PCA	and	model	
them	by	GP

Fit	the	results	of	
simulations	with	a	
parametric	model	
and	model	the	
coefficients	with	GP

Fast	Fourier	Transform	
with	fftlog

compress	360	
results	of	linear	
Boltzmann	solver	
with	PCA	and	model	
them	by	GP

B-spline	Fit	the	
results	of	simulations	
and	model	the	
coefficients	with	GP



Read out pre-computed PCA basis function + GP

Prepare a table for 3D spline

Inputs: 
‣ scale factor (time) 
‣ number density 
‣ projected distance

(or halo mass)

give your cosmological params ~5s
and redshifts ~600ms; HMF GP called inside

convert M_min to n_h ~50μs

Evaluate !! ~1ms



OUR ΔΣ EMULATOR DEMONSTRATIONS

エミュレータ



OUR ΔΣ EMULATOR DEMONSTRATIONS

エミュレータ



OUR ΔΣ EMULATOR DEMONSTRATIONS

エミュレータ



OUR ΔΣ EMULATOR DEMONSTRATIONS

エミュレータ



OUR ΔΣ EMULATOR DEMONSTRATIONS

エミュレータ



OUR ΔΣ EMULATOR DEMONSTRATIONS

エミュレータ



OUR ΔΣ EMULATOR DEMONSTRATIONS

エミュレータ



OUR ΔΣ EMULATOR DEMONSTRATIONS

エミュレータ



GAUSSIAN PROCESS ACCURACY

fractional error

training with 20 models (red) 
validation with 20 other models (blue)

random number varied

エミュレータ



SUMMARY
▸ Modeling the halo mass function and galaxy-galaxy lensing 

signal 

▸ Latin hypercube design + fitting/GP/spline 

▸ handy emulator in python almost ready 

▸ accuracy test undergoing, roughly 2-3% accuracy 

▸ To come 
▸ Apply to real data and extract cosmological information 

▸ RSD emulator to combine g-g lensing and 3D clustering 

▸ further extension under discussion 

▸ e.g., non-flat, w0-wa cosmologies

G-G LENSING SIMULATIONS




