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1.  Observation ErrorsPart 1.  

Applications



Coupled Ocean-Atmosphere

Ensemble covariances for 

coupled atmosphere-ocean 

data assimilation

Challenge: determine 

covariances between 

atmosphere and ocean 

variables at interface for 

hybrid assimilation

Smith, Lawless & Nichols

Ocean-atmosphere interaction



Carbon Cycle Balance

Understanding the information

content in observations of 

forest carbon balance

Challenge: state-parameter 

estimation  - determining 

constrained prior and time 

correlated observation

errors to improve estimates of 

forest CO2 balance

Pinnington, Quaife, Dance, Lawless &

Nichols, with Forest Research Team



Hydrology  - River Flooding 

Improving flood predictions

using data assimilation

Challenge: inflow estimation

together with state-parameter

estimation with real topography

and SAR observations giving 

waterline information

Cooper, Dance, Smith & 

Garcia-Pintado
Flooding in the midlands



DA for Moving Boundary Problems

Bonan, Nichols,

Baines & Partridge

Challenge: Follow 

moving boundaries 

accurately and efficiently 

using data assimilation 

Ice sheet model



Moving Framework – 1D



Courtesy of Michael Ritter

Ice Sheet Model  - Schematic Form

Glacier Zones 



Model Domain
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Model Assumptions



Moving Framework 



Data Assimilation  - Twin Experiments

State vector is:    r

h



Initial Ensemble – 200 members 



Results



Results



Future

Challenge: Treat the problem in 2D  - moving mesh

model is developed, but data assimilation presents 

new issues!!  



1.  Observation Errors

Part 2.

Observation Errors and Conditioning of 

the Assimilation Problem



Rate of convergence and accuracy of the solution 

are bounded in terms of the condition number of the 

Hessian:

Conditioning of the Problem

where         and         are covariance matrices with

special structures that depend on the variances and 

correlation length scales of the errors.

S



Summary: Conditioning of the Problem

We find that the condition number  of  S  increases as:

• the observations become more accurate 

• the observation spacing decreases 

• the prior (background) becomes less accurate 

• the prior error correlation length scales increase

• the observation error covariance becomes 

ill-conditioned.

Haben et al, 2011; Haben 2011, Tabeart, 2016



Condition of Hessian  

B = σb
2 C , where C is a correlation matrix

S



Condition Number of Hessian  

where α =

and p  =   number of observations

Assume C has a circulant covariance structure.

Bounds on the conditioning of the Hessian are:

α



Conditioning of Hessian

Bij =

Condition Number of (B-1 + HR-1HT)   vs   Length Scale 

Periodic Gaussian Exponential Laplacian 2nd Derivative

Blue = condition number    Red = bounds



Preconditioning - Control Variable Transform  

• z  =            (x0 – x0
b)

• Uncorrelated variable

• Equivalent to preconditioning by          

• Hessian of transformed problem is

To improve conditioning transform to new variable :



Preconditioned Hessian  

where

=  || HCHT ||

changes slowly as a function of length scale.

Bounds on the conditioning of the preconditioned 

Hessian are:

.,



Condition number as a function of length scale

Preconditioned Hessian - Gaussian 

Preconditioned (blue)

Bounds (red)



Preconditioned Hessian - Gaussian  

Assume two observations at kth and mth grid points 

Condition number decreases as the separation

of the observations increases



Preconditioned Hessian - Gaussian  

Condition number as a function of observation spacing 



Extension to 4DVar

where

Convergence depends on condition number of



Preconditioned Hessian

where

Bounds on the conditioning of the preconditioned 

Hessian are:

• B = σb
2 C , C is correlation matrix

•

•



Condition of Preconditioned 4DVar –

using SOAR Correlation Matrix 



Convergence Rates of CG in 4DVar –

using SOAR Correlation Matrix 

Haben et al, 2011



Conditioning – with Correlated Observation Errors

We can establish the following theorem:

Haben et al, 2011; Haben 2011, Tabeart, 2016

Similar analysis – leads to the same conclusions, but reveals

important relations between prior and observation covariances



Thank you for your attention! 
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