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Part 1.
Applications
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Coupled Ocean-Atmosphere

Ensemble covariances for
coupled atmosphere-ocean
data assimilation

Challenge: determine
covariances between
atmosphere and ocean
variables at interface for
hybrid assimilation

Ocean-atmosphere interaction

Smith, Lawless & Nichols
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Carbon Cycle Balance

Figure 1: Two year assimilation and five year forecast of Alice Holt
NEE with DALEC2, blue dotted line: background guess, green line:
analysis after assimilation, red dots: observations from Alice Holt flux

site with error bars.
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Understanding the information
content in observations of
forest carbon balance

Challenge: state-parameter
estimation - determining
constrained prior and time
correlated observation

errors to improve estimates of
forest CO, balance

Pinnington, Quaife, Dance, Lawless &
Nichols, with Forest Research Team
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Hydrology - River Flooding

Improving flood predictions
using data assimilation

Challenge: inflow estimation
together with state-parameter
estimation with real topography
and SAR observations giving

waterline information

Tewkesbury

Cooper, Dance, Smith &
Garcia-Pintado

Flooding in the midlands
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DA for Moving Boundary Problems

Challenge: Follow
moving boundaries
accurately and efficiently
using data assimilation

Bonan, Nichols,
Baines & Partridge lce sheet model
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Moving Framework — 1D

Moving mesh methods use varying techniques to
to move the nodes of the mesh

AR

Here we will be using physical properties
to generate the movement
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lce Sheet Model - Schematic Form

Zone of Accumulation

Equilibrium Line
(Firn Line)

Zone of Ablation

GIaC|er ZoneS Courtesy of Michael Ritter
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Model Domain

Consider a flat bed domain x € [0, b(t)],

bt
®#(t)

where h(x, t) is the ice thickness, with boundary conditions:

h,(0,t)=0 and h(b(t),t)=0
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Model Assumptions

o Flat bedrock topography
@ No basal sliding

@ Isothermal ice sheet

@ Grounded ice

e Radially-symmetric ice sheet, so mass balance equation is

oh 19(r hU,)
= mn— —

ot r  Or

@ SIA, so vertically averaged velocity is

n—1 8_/7
dr

Oh

or

Ur _ _2A (pig)n hn-|—]_
n—+ 2
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) Evolution of an ice sheet over time

e Physical quantities (h, U,, ... o0
calculated on a moving grid with
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o ice margin 1, (t) = ri(t)
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e update ice sheet geometry

Earth Observation

g National Centre for University of
@ Reading




Data Assimilation - Twin Experiments

@ What we estimate: moving points and ice thickness.

State vector is: ( r )
h

@ What we observe:

Observations are obtained from a reference run at different times (t =
500, 600, 700, 800, 900, 1000 a) and perturbed with a Gaussian noise.

o ice thickness at different locations, o, = 100 m.
e position of ice margin, o, = 1 km.

@ DA system: Ensemble Kalman Filter.
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Initial Ensemble — 200 members

10 members from the 200-member initial ensemble
thick blue: reference, thick black: initial mean
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Results

Data assimilation at time t = 500
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Results

Evolution of ice margin without and with DA
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Future

Challenge: Treat the problem in 2D - moving mesh
model is developed, but data assimilation presents
new issues!!
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Part 2.
Observation Errors and Conditioning of
the Assimilation Problem
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Conditioning of the Problem

Rate of convergence and accuracy of the solution
are bounded in terms of the condition number of the
Hessian:

S =B !+ (H)'R™H

where B and R are covariance matrices with
special structures that depend on the variances and
correlation length scales of the errors.

National Centre for University of
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Summary: Conditioning of the Problem

We find that the condition number of S increases as:

* the observations become more accurate

 the observation spacing decreases

» the prior (background) becomes less accurate

* the prior error correlation length scales increase
 the observation error covariance becomes

Ill-conditioned.
Haben et al, 2011; Haben 2011, Tabeart, 2016
(D) National Centre for University of
& Lty B Reading




Condition of Hessian
S =B+ (H)TR—lH

o B=0,°C, where Cis a correlation matrix
@ Assume observations are at grid points
Assume observation errors uncorrelated

0§ variance observation errors

H linear.
H'H diagonal.
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Condition Number of Hessian

Assume C has a circulant covariance structure.
Bounds on the conditioning of the Hessian are:

2
arx(C) < k(B '+ H'R'H) < (1 + (02) )\min(C)> k(C)
a
1 Egg)\min C
where a=[_" N o ©)
L+ £ 75 Amax(C)
and p = number of observations
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Conditioning of Hessian

Condition Number of (B + HR''HT) vs Length Scale
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Preconditioning - Control Variable Transform

To improve conditioning transform to new variable :
+ z = B!/ (X9 — X,")
* Uncorrelated variable
» Equivalent to preconditioning by g1/

« Hessian of transformed problem is

I+B*H"R'HB"”

Eatigngleentre for @ University of
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Preconditioned Hessian

Bounds on the conditioning of the preconditioned
Hessian are:

2 2
g
1 g (I+cr‘2(Bl/2HTHBl/2))§1+J—§VO
where
1
vo=||HCHT|| . |, 7 =3 2ijesCiy -

Yo changes slowly as a function of length scale.
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Preconditioned Hessian - Gaussian
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Preconditioned Hessian - Gaussian

Assume two observations at ki and m™ grid points

2 2
g 0
b | g ’Ckmz ’

2
o) o

k(14 0-2(BY2HTHBY/2)) = 1 4

o

Condition number decreases as the separation
of the observations increases

National Centre for University of
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Preconditioned Hessian - Gaussian

Condition Mumber

| | | 1 1 1
1 2 3 4 5 B 7 g 9
Murnber grid lengths between observations

Condition number as a function of observation spacing
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Extension to 4DVar

Convergence depends on condition number of

I 4 Bl/QI:ITR—lﬁBl/Q

where [ Hy [Ro 0 - 0
\ H,M,.,, / \ 0 0 --- R,/
¢ ) de
Mo = dj(:\;l;k’xo Hy = Ox | Mo, (x0)
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Preconditioned Hessian

Bounds on the conditioning of the preconditioned
Hessian are:

1 {Tg p(n+1) N gg N
1+F’(”—|—1)UE »  (HCH )ij < £(Ap) <1+ —3|[HCH' ||
2 ij=1 ©

where

- B=0,°C, Cis correlation matrix
e R, :a(z)l for k =0.....n

e Advection model discretized using upwind scheme

National Centre for University of
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Condition of Preconditioned 4DVar —
using SOAR Correlation Matrix
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Convergence Rates of CG in 4DVar —
using SOAR Correlation Matrix

lterations
Lengthscale | Unprecond | Precond
0.01 8 8
0.1 H4 11
0.2 187 12
0.3 361 12

Haben et al, 2011
University of
@ Reading




Conditioning — with Correlated Observation Errors

We can establish the following theorem:

Let B € RV*N and R € RP*P, with p < N, be the background and
observation error covariance matrices respectively. Additionally, let H

c RP*N pe the observation operator. Then the following bounds are
satisfied by the condition number of the Hessian, S = B!+ HTR_IH,

k(B )\m,"n B
(1+ imf*§5>)(/\jax(HHT)) < H(8) < (1 320 HH (B,

Similar analysis — leads to the same conclusions, but reveals
Important relations between prior and observation covariances

Haben et al, 2011; Haben 2011, Tabeart, 2016
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Thank you for your attention!
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