New Applications and Challenges In Data Assimilation

Met Office

Nancy Nichols University of Reading

Part 1. Applications

Coupled Ocean-Atmosphere

Ensemble covariances for coupled atmosphere-ocean data assimilation

Challenge: determine covariances between atmosphere and ocean variables at interface for hybrid assimilation

Smith, Lawless & Nichols

Ocean-atmosphere interaction

Carbon Cycle Balance

Figure 1: Two year assimilation and five year forecast of Alice Holt NEE with DALEC2, blue dotted line: background guess, green line: analysis after assimilation, red dots: observations from Alice Holt flux site with error bars. Understanding the information content in observations of forest carbon balance

Challenge: state-parameter estimation - determining constrained prior and time correlated observation errors to improve estimates of forest CO₂ balance

Pinnington, Quaife, Dance, Lawless & Nichols, with Forest Research Team

Hydrology - River Flooding

Improving flood predictions using data assimilation

Challenge: inflow estimation together with state-parameter estimation with real topography and SAR observations giving waterline information

Cooper, Dance, Smith & Garcia-Pintado

Flooding in the midlands

DA for Moving Boundary Problems

Challenge: Follow moving boundaries accurately and efficiently using data assimilation

Bonan, Nichols, Baines & Partridge

Ice sheet model

Moving Framework – 1D

Moving mesh methods use varying techniques to to move the nodes of the mesh

Here we will be using *physical properties* to generate the movement

Ice Sheet Model - Schematic Form

Glacier Zones Courtesy of Michael Ritter

Model Domain

Consider a flat bed domain $x \in [0, b(t)]$,

where h(x, t) is the ice thickness, with boundary conditions:

 $h_{x}(0,t) = 0$ and h(b(t),t) = 0

Model Assumptions

- Flat bedrock topography
- No basal sliding
- Isothermal ice sheet
- Grounded ice
- Radially-symmetric ice sheet, so mass balance equation is

$$\frac{\partial h}{\partial t} = m - \frac{1}{r} \frac{\partial (r h U_r)}{\partial r}$$

• SIA, so vertically averaged velocity is

$$U_{r} = -\frac{2A(\rho_{i}g)^{n}}{n+2}h^{n+1}\left|\frac{\partial h}{\partial r}\right|^{n-1}\frac{\partial h}{\partial r}$$

- One moving radius for
 - ice divide $\widehat{r}_1(t) = 0$
 - ice margin $\hat{r}_{n_r}(t) = r_l(t)$

• Strategy:

At given time, geometry of ice sheet known

- calculate velocity of moving radii.
- \longrightarrow next time step
 - update radii
 - update ice sheet geometry

Data Assimilation - Twin Experiments

• What we estimate: moving points and ice thickness.

State vector is: $\begin{pmatrix} r \\ h \end{pmatrix}$

Observations are obtained from a reference run at different times (t = 500, 600, 700, 800, 900, 1000 a) and perturbed with a Gaussian noise.

- ice thickness at different locations, $\sigma_h = 100$ m.
- position of ice margin, $\sigma_r = 1$ km.
- DA system: Ensemble Kalman Filter.

Initial Ensemble – 200 members

Results

Results

Challenge: Treat the problem in 2D - moving mesh model is developed, but data assimilation presents new issues!!

Part 2. Observation Errors and Conditioning of the Assimilation Problem

Conditioning of the Problem

Rate of convergence and accuracy of the solution are bounded in terms of the condition number of the Hessian:

$\mathbf{S} = \mathbf{B}^{-1} + (\mathbf{H})^T \mathbf{R}^{-1} \mathbf{H}$

where **B** and **R** are covariance matrices with special structures that depend on the variances and correlation length scales of the errors.

Summary: Conditioning of the Problem

We find that the condition number of S increases as:

- the observations become more accurate
- the observation spacing decreases
- the prior (background) becomes less accurate
- the prior error correlation length scales increase
- the observation error covariance becomes ill-conditioned.

Condition of Hessian

$$\mathbf{S} = \mathbf{B}^{-1} + (\mathbf{H})^T \mathbf{R}^{-1} \mathbf{H}$$

- $\mathbf{B} = \sigma_b^2 \mathbf{C}$, where **C** is a correlation matrix
- Assume observations are at grid points
- Assume observation errors uncorrelated
- σ_0^2 variance observation errors
- $\mathbf{R} = \sigma_0^2 \mathbf{I}$
- **H** linear.
- $\mathbf{H}^T \mathbf{H}$ diagonal.

Condition Number of Hessian

Assume **C** has a circulant covariance structure. Bounds on the conditioning of the Hessian are:

$$\boldsymbol{\alpha} \kappa(\mathbf{C}) \leq \kappa(\mathbf{B}^{-1} + \mathbf{H}^T \mathbf{R}^{-1} \mathbf{H}) \leq \left(1 + \left(\frac{\sigma_b^2}{\sigma_o^2}\right) \lambda_{\min}(\mathbf{C})\right) \kappa(\mathbf{C})$$

where
$$\alpha = \left(\frac{1 + \frac{p}{N}\frac{\sigma_b^2}{\sigma_o^2}\lambda_{\min}(\mathbf{C})}{1 + \frac{p}{N}\frac{\sigma_b^2}{\sigma_o^2}\lambda_{\max}(\mathbf{C})}\right)$$

and p = number of observations

Conditioning of Hessian

Condition Number of (B⁻¹ + HR⁻¹H^T) vs Length Scale

Blue = condition number Red = bounds

Preconditioning - Control Variable Transform

To improve conditioning transform to new variable :

•
$$z = B^{1/2} (x_0 - x_0^b)$$

- Uncorrelated variable
- Equivalent to preconditioning by $\mathbf{B}^{1/2}$
- Hessian of transformed problem is

$$\mathbf{I} + \mathbf{B}^{1/2} \mathbf{\hat{H}}^T \mathbf{\hat{R}}^{-1} \mathbf{\hat{H}} \mathbf{B}^{1/2}$$

Preconditioned Hessian

Bounds on the conditioning of the preconditioned Hessian are:

$$1 + \frac{\sigma_b^2}{\sigma_o^2} \gamma \leq \mathcal{K} \left(\mathbf{I} + \sigma_o^{-2} (\mathbf{B}^{1/2} \mathbf{H}^T \mathbf{H} \mathbf{B}^{1/2}) \right) \leq 1 + \frac{\sigma_b^2}{\sigma_o^2} \nu_0$$

where

$$u_0 = \| \mathbf{H}\mathbf{C}\mathbf{H}^\mathsf{T} \|_{\infty}, \quad \gamma = \frac{1}{p} \sum_{i,j \in J} c_{i,j}.$$

 ν_0 changes slowly as a function of length scale.

Preconditioned Hessian - Gaussian

Condition number as a function of length scale

Preconditioned Hessian - Gaussian

Assume two observations at kth and mth grid points

$$\kappa(\mathbf{I} + \sigma_o^{-2}(\mathbf{B}^{1/2}\mathbf{H}^T\mathbf{H}\mathbf{B}^{1/2})) = 1 + \frac{\sigma_b^2}{\sigma_o^2} + \frac{\sigma_b^2}{\sigma_o^2} |c_{k,m}|$$

Condition number decreases as the separation of the observations increases

Preconditioned Hessian - Gaussian

Condition number as a function of observation spacing

Extension to 4DVar

Convergence depends on condition number of

where

$$\hat{\mathbf{H}} = \begin{pmatrix} \mathbf{H}_{0} \\ \mathbf{H}_{1}\mathbf{M}_{0,1} \\ \vdots \\ \mathbf{H}_{n}\mathbf{M}_{0,n} \end{pmatrix} \qquad \hat{\mathbf{R}} = \begin{pmatrix} \mathbf{R}_{0} & 0 & \cdots & 0 \\ 0 & \mathbf{R}_{1} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \mathbf{R}_{n} \end{pmatrix}$$

$$\mathbf{M}_{0,k} = \frac{\partial \mathcal{M}_{0,k}}{\partial \mathbf{x}} |_{\mathbf{x}_{0}} \qquad \mathbf{H}_{k} = \frac{\partial \mathcal{H}_{k}}{\partial \mathbf{x}} |_{\mathcal{M}_{0,k}(\mathbf{x}_{0})}$$

Preconditioned Hessian

Bounds on the conditioning of the preconditioned Hessian are:

$$1 + \frac{1}{p(n+1)} \frac{\sigma_b^2}{\sigma_o^2} \sum_{i,j=1}^{p(n+1)} (\hat{\mathbf{H}} \mathbf{C} \hat{\mathbf{H}}^T)_{i,j} \le \kappa(\mathbf{A}_p) \le 1 + \frac{\sigma_b^2}{\sigma_o^2} ||\hat{\mathbf{H}} \mathbf{C} \hat{\mathbf{H}}^T||_{\infty}$$

where

- **B** = σ_b^2 **C** , **C** is correlation matrix
- $\mathbf{R}_k = \sigma_0^2 \mathbf{I}$ for k = 0, ..., n
- Advection model discretized using upwind scheme

Condition of Preconditioned 4DVar – using SOAR Correlation Matrix

Convergence Rates of CG in 4DVar – using SOAR Correlation Matrix

	Iterations	
Lengthscale	Unprecond	Precond
0.01	8	8
0.1	54	11
0.2	187	12
0.3	361	12

Conditioning – with Correlated Observation Errors

We can establish the following theorem:

Let $\mathbf{B} \in \mathbb{R}^{N \times N}$ and $\mathbf{R} \in \mathbb{R}^{p \times p}$, with p < N, be the background and observation error covariance matrices respectively. Additionally, let $\mathbf{H} \in \mathbb{R}^{p \times N}$ be the observation operator. Then the following bounds are satisfied by the condition number of the Hessian, $\mathbf{S} = \mathbf{B}^{-1} + \mathbf{H}^T \mathbf{R}^{-1} \mathbf{H}$,

$$\frac{\kappa(\mathbf{B})}{\left(1+\frac{\lambda_{max}(\mathbf{B})}{\lambda_{min}(\mathbf{R})}\lambda_{max}(\mathbf{H}\mathbf{H}^{T})\right)} \leq \kappa(\mathbf{S}) \leq \left(1+\frac{\lambda_{min}(\mathbf{B})}{\lambda_{min}(\mathbf{R})}\lambda_{max}(\mathbf{H}\mathbf{H}^{T})\right)\kappa(\mathbf{B}).$$

Similar analysis – leads to the same conclusions, but reveals important relations between prior and observation covariances

Haben et al, 2011; Haben 2011, Tabeart, 2016

Thank you for your attention!

References

• Bormann N and Bauer P. *2010*. Estimates of spatial and interchannel observation-error characteristics for current sounder radiances for numerical weather prediction. I: Methods and application to ATOVS data. *QJ Royal Meteor Soc*, 136:1036–1050.

- Bormann N, Collard A, Bauer P. *2010*. Estimates of spatial and interchannel observationerror characteristics for current sounder radiances for numerical weather prediction II:application to AIRS and IASI data. *QJ Royal Meteor Soc* 136: 1051 – 1063.
- Desroziers G, Berre L, Chapnik B, Poli, P. *2005*. Diagnosis of observation, background and analysis-error 131: 3385 3396.
- Desroziers, G, Berre, L and Chapnik, B. 2009. Objective validation of data assimilation systems: diagnosing sub-optimality. In: *Proceedings of ECMWF Workshop on diagnostics of data assimilation system performance*,15-17 June 2009.
- Hodyss D and Nichols NK. 2015. Errors of representation: basic understanding, *Tellus A*, 67, 24822 (17 pp)
- Haben SA, Lawless, AS and Nichols NK. *2011*. Conditioning of incremental variational data assimilation, with application to the Met Office system, *Tellus*, **63A**, 782 792.
- Haben SA. *2011* Conditioning and Preconditioning of the Minimisation Problem in Variational Data Assimilation, PhD thesis, Dept of Mathematics & Statistics, University of Reading.
- M`enard R, Yang Y and Rochon Y. 2009. Convergence and stability of estimated error variances derived from assimilation residuals in observation space. In: *Proceedings of ECMWF Workshop on diagnostics of data assimilation system performance*,15-17 June 2009.

• Stewart LM, Dance, SL and Nichols NK. 2008. Correlated observation errors in data assimilation. Int J for Numer Methods in Fluids, 56:1521–1527.

• Stewart LM, Cameron J, Dance SL, English S, Eyre JR, Nichols NK. *2009*. Observation error correlations in IASI radiance data. University of Reading. Dept of Mathematics & Statistics, Mathematics Report 1/2009.

•Stewart LM. 2010. Correlated observation errors in data assimilation. PhD thesis, Dept of Mathematics & Statistics, University of Reading.

• Stewart LM, Dance SL, Nichols NK. *2013*. Data assimilation with correlated observation errors: experiments with a 1-D shallow water model *Tellus A*, 65, 2013.

• Stewart LM, Dance SL, Nichols NK, Eyre JR, Cameron J. *2014*. Estimating interchannel observation error correlations for IASI radiance data in the Met Office system. *QJ Royal Meteor Soc,* 140:1236-1244.

Tabeart JM. 2016. On the variational data assimilation problem with non-diagonal observation weighting matrices. MRes thesis, Dept of Mathematics & Statistics, University of Reading.

• Waller JA. 2013, Using observations at different spatial scales in data assimilation for environmental prediction, PhD thesis, Dept of Mathematics & Statistics, University of Reading.

• Waller JA, Dance SL, Lawless AS, Nichols NK and Eyre JR. *2014a*. Representativity error for temperature and humidity using the Met Office high resolution model. *QJ Royal Meteor Soc*, 140:1189-1197.

• Waller JA, Dance SL, Lawless AS and Nichols NK. *2014b*. Estimating correlated observation errors with and ensemble transform Kalman filter. *Tellus* A, **66**, 23294 (15 pp).

• Waller JA, Dance SL and Nichols NK. *2016a.* Theoretical insight into diagnosing observation error correlations using background and analysis innovation statistics, *QJ Royal Meteor Soc,* 142 (694), pp. 418-431.

• Waller JA, Simonin D, Dance SL, Nichols NK and Ballard SP. *2016b.* Diagnosing observation error correlations for Doppler radar radial winds in the Met Office UKV model using observation-minus-background and observation-minus-analysis statistics. *Monthly Weather Review*, doi: 10.1175/MWR-D-15-0340.1. (*in press*)

• Waller JA, Ballard SP, Dance SL, Kelly G, Nichols NK and Simonin D. *2016c.* Diagnosing horizontal and inter-channel observation error correlations for SEVIRI observations using observation-minus-background and observation-minus-analysis statistics. *Remote Sens*ing, 8, 581 (14pp).

• Weston PP, Bell W, and Eyre JR. 2014. Accounting for correlated error in the assimilation of high-resolution sounder data. *QJ Royal Meteor Soc,* doi: 10.1002/qj.2306.

• Wattrelot E, Montmerle T and Guerrero CG. *2012*. Evolution of the assimilation of radar data in the AROME model at convective scale. In Proceedings of the 7th European Conference on Radar in Meteorology and Hydrology.

