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Introduction

 The resolution of advanced radar observation data is higher 
than that a typical NWP system can use.

 In particular, Phased Array Weather Radar (PAWR).

 With the powerful K computer resources, we explore radar 
data assimilation

 with a 30-sec rapid-update cycle

 at 1-km – 100-m model resolution

 comparable to the spatial and temporal resolution of 
PAWR observations.



Key investigation

 Development of a high-performance regional data assimilation 
system, targeted for rapid update cycle and big observation data.

 SCALE-LETKF (Lien et al. 2017; Miyoshi et al. 2016)

 Techniques for assimilating high-resolution, dense data. 

 Radar data quality control (Ruiz et al. 2015)

 Super-observation

 Relaxation-to-prior-spread (RTPS)

 Implicit thinning and localization

 Better use of both raining and clear reflectivity data to initiate and 
suppress the convections.

 Clear reflectivity shift

 Reject data based on background ensemble conditions



SCALE-LETKF

SCALE-LETKF (Lien et al. 2017)

https://github.com/gylien/scale-letkf

A regional Local Ensemble Transform 
Kalman Filter (LETKF) data assimilation system 
for SCALE-RM (Lien et al. 2016)

 Highly configurable

 Highly scalable

Scalable Computing 
for Advanced Library 
and Environment-
Regional Model (SCALE-RM)
(Nishizawa et al. 2015; 
Sato et al. 2015)



Stage-in Stage-outCreating 

job script

Flowchart of ensemble DA cycles
in the SCALE-LETKF

Fortran-MPI programs

Shell scripts

member #2

member #1

mean/spread

member #3

Boundary file

preparation

Ensemble

Forecasts

Observation

Operator

LETKF

One MPI program
for ensemble

Entire DA cycle
in a single job

Scripts called within
MPI programs

Data conversion removed Use local disks for parallel I/O



Computational time 
– Local disk vs. global disk

“Other (Fortran)” includes:
1. Initialization/finalization of MPI communicators.
2. Copying/moving files before and after programs.
“Other (Shell)” includes:
1. Initialization/finalization of programs.
2. Collecting the standard output/errors.

Local disk
(rank-directory)

Global disk



TEST1:  January, 2016
TEST2:  February, 2016
TEST3:  June, 2016
TEST4:  September, 2016
TEST5:  January, 2017

Computational time 
– Test with up to 72,720 nodes



Settings of the PAWR assimilation

Resolution Size Observation Cycle length

D1 15 km 5760 x 4320 km PREPBUFR 6 h

D2 5 km 1280 x 1280 km PREPBUFR 6 h

D3 1 km 180 x 180 km PAWR 5 m

D4

1 km
500 m
250 m
100 m

120 x 120 km PAWR 30 s

D1 (15 km)

D2 (5 km)

D3 (1 km)

D4 
(1km~100m)

Ensemble size:  100
State variables: U, V, W, P, T, Q, Qc, Qr, Qs, Qi, Qg
Observations superobed to model resolution

00:00Z July 12

02:00Z July 13

06:00Z July 13
(15:00L)

00:00Z July 1 D1

D2

D3

D4
Assimilate PAWR data every 30 seconds in D4:
Reflectivity         (Ref) +
Radial velocity    (Vr) 30-min forecasts



Observation pre-processing

Raw data

QCed data

Data for LETKF

Radar quality control:  
Remove ground clutter 
and attenuated data
(Ruiz et al. 2015)

Superobing:
Average observations 
within a model grid



250M super-obs for LETKF assimilation

250-m superobs

Data counts in a single 30-sec cycle:

Original data (in polar coordinates):
• 600 radial points         (every 100 m)
• 300 azimuthal angles (every 1.2 deg)
• 98 elevation angles  (every ~ 1 deg)

Superobed data:
• Ref : ~ 3,100,000
• Vr :      ~ 170,000

Assimilated data:
• Ref :    ~ 280,000
• Vr :      ~ 160,000

Mostly rejected 
because both 
the model and 
observations 
are clear-sky 
(< 10 dBZ)



Raining / clear reflectivity

 Ref_rain:     raw Ref >= 10 dBZ
Ref_clear:   raw Ref <   10 dBZ

 “Clear reflectivity shift”:
 Set all Ref_clear (both observation and background) to 5 dBZ

(Similar to Aksoy et al. 2009, but leave a 5-dBZ gap between minimum Ref_rain
and Ref_clear)

 Reject data when there are too few raining (Ref_rain) 
background members:
 For Ref_rain obs,  require >= 1  (out of 100) background members having Ref_rain

 For Ref_clear obs, require >= 20 (out of 100) background members having Ref_rain

(Similar to Lien et al. 2013, 2016 for precipitation assimilation)

Ref_clear Ref_rain
5            10 dBZ



All Ref_clear (Ref < 10 dBZ) → 10 dBZ (no gap)
All Ref_clear (Ref < 10 dBZ) → 5 dBZ
All Ref_clear (Ref < 10 dBZ) → 0 dBZ

Threat scores (1KM)

[10 dBZ] [30 dBZ]

(6-forecast average)

(min) (min)

Impact of clear-reflectivity shift (I)



OBS
Ref_clear (Ref<10 dBZ) 

→ 10 dBZ (no shift)
Ref_clear (Ref<10 dBZ) 

→ 5 dBZ

10-min analyses and 30-min forecasts (1KM) 

Impact of clear-reflectivity shift (II)



Covariance inflation

 “Relaxation” methods:

 Relax the analysis members (covariance) back to the 
background members

 Easy to compute

 (Almost) Do not need “spin-up” time

 Adaptive to observation density

 Relaxation to prior perturbation (RTPP; Zhang et al. 2004)   vs. 
Relaxation to prior spread (RTPS; Whitaker and Hamill 2012)

 In the LETKF, can be done by relax the weight matrix (W):

RTPP:

RTPS:

 Can be more adaptive:

 Adaptively determine the  α parameter (Kotsuki et al. 2017)
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RTPS: α = 0.95

Threat scores (1KM)

Impact of relaxation method

[10 dBZ] [30 dBZ]

(6-forecast average)

RTPP: α = 0.95
RTPP: α = 0.9
RTPP: α = 0.85
RTPP: α = 0.8
RTPP: α = 0.7



Thinning and covariance localization 

 Thinning, because of:

 Observation error correlation

 Representativeness errors

 Reduce the observation number compared to 
the degree of freedoms of the analysis (i.e., ensemble size)

 Computational costs

 Covariance localization, because of:

 Sampling errors with a limited ensemble size

 Reduce the observation number in local areas compared to the degree of 
freedoms of the analysis (i.e., ensemble size)

 Computational costs

 With very dense observations, the last two reasons become 
much more important.

 Thinning unavoidably decreases the resolution of the 
observation data!

Lorenc 2003, QJRMS
Tsyrulnikov 2010, COSMO News Letters
Hotta 2017, RISDA 2017



An alternative way:
Observation number limit in the LETKF (I)

 Hamrud et al. 2015 (ECMWF global model):
Limit the number of observations used at each grid point for 
each combination of different report types (e.g., radiosonde) 
and variables (e.g., U-wind).

 #OBS = 30 per report types and variables;  Ens size = 60~240

 Schraff et al. 2016 (DWD regional model: KENDA-COSMO):
Keep a constant of the “effective number of observations” 
used at each grid point by adjusting the localization radius.

 Effective #OBS = 100;  Ens size = 40

 Observations spatially closest to the analyzed grid are 
selected.



 Advantages of the observation number limit:

 (Significantly) improve the analysis and forecasts! 
(Hamrud et al. 2015)

 Save the computational time.

 We implement and test this technique in our regional data 
assimilation system (SCALE-LETKF), assimilating dense radar 
data.

 Not new, but we test it with very dense data and 
very high model resolution.

An alternative way:
Observation number limit in the LETKF (II)



Observation number limit vs. thinning

Observations



Observation number limit vs. thinning

Model grids

Observations
Observations picked by thinning

Thinning

Thinning mesh



CBA

Observation number limit vs. thinning

Model grids

Observations
Observations picked by thinning

Observations assimilated at grid A, B, C

Localization cut-off radius

Thinning



CBA

Observation number limit vs. thinning

Model grids

Observations

Observations assimilated at grid A, B, C

Localization cut-off radius

Observation number limit = 10



Experimental design

Experiment 
name

Ensemble 
size

#OBS 
limit

(for each 
obs type)

Thinning
(pick up one 
every XxYxZ

grids)

M100-#OBS<XX> 100 <XX> ---

M100-Unlmt 100 Unlimited ---

M25-#OBS<XX> 25 <XX> ---

M25-Unlmt 25 Unlimited ---

THIN4x4 100 100 4x4x2

THIN16x16 100 100 16x16x8

* Observations are first superobed to the model resolution 
(250 m) in all experiments.



Threat score
Threshold = 15 dBZ

Bias score
Threshold = 15 dBZ

M100-Unlmt

M100-Unlmt (2-fcst average)

TS and BS are verified against 
the 3-D reflectivity observations, 
averaged onto 1-km grids



Threat score
Threshold = 15 dBZ

Bias score
Threshold = 15 dBZ

M100-Unlmt

M100-#OBS100
M100-#OBS25

M100-#OBS400

M100-#OBS<XX> (2-fcst average)

TS and BS are verified against 
the 3-D reflectivity observations, 
averaged onto 1-km grids



Threat score
Threshold = 15 dBZ

Bias score
Threshold = 15 dBZ

M25-Unlmt

M25-#OBS25
M25-#OBS12

M25-#OBS100

M25-#OBS<XX> (2-fcst average)

TS and BS are verified against 
the 3-D reflectivity observations, 
averaged onto 1-km grids



Red:   100 members

Blue:    25 members

#OBS for each obs type

Mean 5-min and 30-min forecast TS
T

S

24         50        100       200     400       800  for total

Solid lines: 
Mean TS for the first 5-min forecasts

Dashed lines: 
Mean TS for 30-min forecasts

Unlimited



M100-#OBS25 M100-#OBS100 M100-Unlmt

Localization cut-off area

# observations assimilated at each grid (first cycle)

50 200

> 100,000



M100-#OBS25 M100-#OBS100 M100-Unlmt

~15 km

Real localization cutoff radius (km) (first cycle)

~0.9 km~0.5 km

Localization adaptive to 
the observation density



M100-#OBS25 M100-#OBS100 M100-Unlmt

Very similar !

Analysis increment: Reflectivity (dBZ) (first cycle)



M100-#OBS25 M100-#OBS100 M100-Unlmt

THIN4x4 (1 km) THIN16x16 (4 km)

50 200

> 100,000

~ 10,000 ~ 200

# observations assimilated at each grid (first cycle)



M100-#OBS25 M100-#OBS100 M100-Unlmt

Analysis increment: Reflectivity (dBZ) (first cycle)

THIN4x4 (1 km) THIN16x16 (4 km)

Increments change 
with thinning



Threat score
Threshold = 15 dBZ

M100-Unlmt
M100-#OBS100

THIN4x4
THIN16x16

Thinning (2-fcst average)



Computational time

(3672 nodes)

#OBS for each obs type



Discussion: observation number limit (I)

 The number of observations that can be effectively assimilated 
by the EnKF is limited by (a few times of) the ensemble size, 
due to the limited degree of freedoms of the analysis

(e.g., Lorenc 2003, QJRMS; Tsyrulnikov 2010, COSMO News Letters; 
Talk [8-2]: Daisuke Hotta)

 In the situation of assimilating dense mesoscale observation 
data, this may be the dominant reason for thinning, 
and also an important reason for localization.

 If we can only assimilate a limited number of observations, 
we should choose the most important ones!



Discussion: observation number limit (II)

 This method provides a simple way to perform both 
“implicit thinning” and “adaptive localization” in the LETKF.

 Suggested strategies of assimilating dense observation data 
with the LETKF:

 1) Mitigate the issues of observation error correlation and 
representativeness errors by, e.g.,

 Thinning

 Superobing

 Considering the full R matrix

 2) Assimilate with the observation number limit.

 #OBS ~ a few times of the ensemble size

Not as strong as if not using the observation number limit



PAWR assimilation results 
with different model resolutions

Experiments
Model 

resolution
Observation
resolution

Cycle
length

Assimilation 
period

# forecast cases
(every 10 min)

1 KM (D3) 1 km 1 km 5 min 4 hour --

1 KM  (D4) 1 km 1 km 30 sec 60 min 6

500 M  (D4) 500 m 500 m 30 sec 60 min 6

250 M  (D4) 250 m 250 m 30 sec 60 min 6

100 M  (D4) 100 m 100 m 30 sec 20 min 2

Provide 
ensemble
boundary 
conditions



1KM 100M OBS after QC

Cross section

12:00L–15:00L : 3-hr analysis at 1KM with 5-min cycles (not shown)
15:00L–15:20L : 20-min analysis (gray background)
15:20L–15:50L : 30-min forecast (purple background)



Initial time: 15:10L 15:20L

16:00L15:40L 15:50L

30-min forecasts at 250-m model resolution
15:30L

10 dBZ 40 dBZObservation:



Fractions Skill Score (FSS)   
(Roberts and Lean 2008)

 Verify fractions in neighbor areas

 Changeable parameters:

 Threshold

 Verification length scale

(from Roberts and Lean 2008)

Asymptotic value 
related to biasSkill increases with 

length scales

More skillful

Less skillful

Better than 
“uniform” forecasts 
when FSS > ~0.5



Threshold = 15 dBZ (6-fcst average)

500M
250M

1KM

Dashed lines: 
10-min forecast

(Better than “uniform”)

30-min forecasts
Fractions Skill Score (FSS)

Solid lines: 
Analysis

Dotted lines: 
30-min forecast

“Skillful” 10-min forecasts in all scales 
including the finest grid scale

“Skillful” 30-min forecasts at scale > ~10 km

Higher resolution forecasts become worse 
in longer forecast time



Threshold = 15 dBZ (6-fcst average)

500M
250M

1KM

Solid lines: 
Hori. length scale = 1 km

Dashed lines: 
Hori. length scale = 10 km

(Better than “uniform”)

30-min forecasts
Fractions Skill Score (FSS)



Threshold = 15 dBZ

500M
250M

1KM

Solid lines: 
Hori. length scale = 1 km

Dashed lines: 
Hori. length scale = 10 km

(Better than “uniform”)

30-min forecasts
Fractions Skill Score (FSS)

100M

Forecast skill differs much run by run:
Need to conduct more forecasts?



Summary

 We assimilate phased array weather radar data 
with a 30-second rapid-update cycle at sub-kilometer resolution.

 The analyses are very close to observation.

 Skillful 10-min forecasts and acceptable 10- to 30-min 
forecasts are obtained.

 Higher-resolution model forecasts need to be improved.

 Studies on the techniques for assimilating high-resolution 
radar data, e.g.,

 Implicit thinning and localization by observation number limit.

 Clear reflectivity shift.

 Next step:

 Longer assimilation period (> days).



Additional topic: Deterministic run

 Perform an independent update of a deterministic run 
(Schraff et al. 2016; KENDA-COSMO).

 Ensemble mean update:

 (Mean) Deterministic run update:

ොx𝑎 = ොx𝑏 + X𝑏 ෨P𝑎 Y𝑏
T
R−1 y𝑜 − 𝐻 ොx𝑏

തx𝑎 = തx𝑏 + X𝑏ഥw𝑎

= തx𝑏 + X𝑏 ෨P𝑎 Y𝑏
T
R−1 y𝑜 − 𝐻 x𝑏

(from Schraff et al. 2016)

ഥ□ : ensemble mean
ෝ□ : deterministic run



Threshold = 10 dBZ Threshold = 20 dBZ

Ensemble mean

(Mean) Deterministic run

Member #1

Threat scores (1KM)
(5-forecast average)

Impact of deterministic run (I)



Imbalance: Domain-averaged |dPs/dt|

Ensemble mean
(Mean) Deterministic run
Member #1

Impact of deterministic run (II)



Potential key use:  
Typhoon data assimilation

(Courtesy of Honda)

Big differences 
in typhoon intensity 
between ensemble mean 
and deterministic run



Ongoing work: Random additive noises 

 Proposed by Dowell and Wicker (2009) and has been used 
in a number of radar data assimilation studies afterwards.

 Add spatially correlated random noises on U, V, T and Td (in 
order to perturb Q) onto the analysis every cycle.

 Horizontal scale = 4 km;  Vertical scale = 2 km

 Only apply to the area with observed reflectivity

 My modifications:

 Add the noises only on Q, by relative amounts to its original 
analysis value.

 Done as “additive inflation” in the LETKF.

 Prepare samples with the same number as the ensemble size 
and randomly shuffle them every cycle. 

 Horizontal scale = 1 km;  Vertical scale = 500 m

 (Tentatively) Apply to the entire domain



A sample of random additive noises 



Impact of additive noise on spreads (I)
• Standard deviation = 3% to the original Q values
• After 3-h DA cycle every 5 minutes (36 cycles)
• Also apply RTPS = 0.9 for the entire period 
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Q (g/kg) U (m/s) T (K)

No noise

Additive Q noise

Domain maximum

Domain average

Domain minimum

Impact of additive noise on spreads (II)
• Standard deviation = 3% to the original Q values
• After 3-h DA cycle every 5 minutes (36 cycles)
• Also apply RTPS = 0.9 for the entire period 



Threshold = 15 dBZ (6-fcst average)

Additive Q noise

Lines:  forecasts from 
deterministic run

Dots:   forecast from 
ensemble mean

No noise
Solid lines: 
Hori. length scale = 1 km

Dashed lines: 
Hori. length scale = 10 km

(Better than “uniform”)

Impact of additive noise on spreads (III)
30-min-forecast FSS


