

Preliminary Experimental Results of Polarimetric Radar Data Assimilation in the Case of Typhoon Soudelor (2015)

Chih-Chien Tsai

Taiwan Typhoon and Flood Research Institute (TTFRI)

Youngsun Jung

Center for Analysis and Prediction of Storms (CAPS)

RIKEN AICS August 4, 2017

www.narlabs.org.tw

Polarimetric variables

Z _H (dBZ)	Horizontal reflectivity	$Z_H = 10 \log Z_{hh}$		
	Rain: 25~60 dBZ Snow: -10~3 Hail: 50~65 dBZ Wet hail: 45~	5 dBZ Wet snow: $20 \sim 45$ dBZ 80 dBZ		
Z _{DR} (dB)	Differential reflectivity	$Z_{DR} = 10 \log \frac{Z_{hh}}{Z_{vv}}$		
	Rain: 0.5~4 dBSnow: -0.5~1 dHail: -1~0.5 dBWet hail: -1~6	B Wet snow: 0.5~3 dB dB		
LDR (dB)	Linear depolarization ratio	$LDR = 10 \log \frac{Z_{hv}}{Z_{hh}} \text{ or } 10 \log \frac{Z_{vh}}{Z_{vv}}$		
	Mixed phase, random orientation	on, irregular shape \rightarrow high <i>LDR</i>		

Polarimetric variables

$ ho_{HV}$	Co-polar correlation coefficient	$\rho_{HV} = \frac{\langle f_a^* f_b \rangle}{\sqrt{\langle f_a ^2 \rangle \langle f_b ^2 \rangle}}$	
	Rain: > 0.95Snow: > 0.95Hail: 0.9~0.95Wet hail: > 0.9	Wet snow: 0.5~0.9 Ground clutter: < 0.5	
ϕ_{DP} (°)	Differential phase	$\phi_{DP}=\phi_{hh}-\phi_{vv}$	
	Increase as the radar beam penetrates oblate hydrometeors		
K _{DP} (°/km)	Specific differential phase	$K_{DP} = \frac{1}{2} \frac{d\phi_{DP}}{dr}$	
	Rain: 0~20 °/km Snow: -1~1 ° Hail: -1~2 °/km Wet hail: 0~2	°/km Wet snow: 0~1 °/km 0 °/km	

NAR Labs Capabilities of polarimetric radar data

Bulk microphysical schemes

Gamma drop size distribution: $N(D) = N_0 D^{\mu} e^{-\Lambda D}$

NARLabs Examples of bulk microphysical schemes

Scheme	Prognostic q	Prognostic N _t	Constant N_0 (m ⁻⁴)	μ	Constant ρ (kg m ⁻³)
Lin			N_{0r} : 8e6 N_{0s} : 3e6 N_{0g} : 4e6		$\rho_r: 1000 \ \rho_s: 100 \ \rho_g: 400$
WSM6			N_{0r} : 8e6 N_{0s} : 2e6 N_{0g} : 4e6 $(N_{0h}$: 4e4)	$\mu_{rsgh}: 0$	$\rho_r: 1000 \ \rho_s: 100 \ \rho_g: 500 \ \rho_h: 700$
Goddard	$\begin{array}{c} q_c \ q_r \ q_i \\ q_s \ q_{g(h)} \end{array}$		N_{0r} : 8e6 N_{0s} : 1.6e7 N_{0g} : 4e6 $(N_{0h}$: 2e5)		$ ho_r: 1000 ho_s: 100 ho_g: 400 ho_h: 917$
WDM6		N _n N _c N _r	N_{0s} : 2e6 N_{0g} : 4e6 (N_{0h} : 4e4)	$\mu_r: 1$ $\mu_{sgh}: 0$	$ ho_r: 1000 ho_s: 100 ho_g: 500 ho_h: 700$
Morrison		$\frac{N_r \ N_i \ N_s}{N_{g(h)}}$			$\rho_r: 997 \ \rho_s: 100 \ \rho_g: 400 \ \rho_h: 900$
Milbrandt -Yau	$\begin{array}{c} q_c \ q_r \ q_i \\ q_s \ q_g \ q_h \end{array}$	$\frac{N_c}{N_s} \frac{N_r}{N_g} \frac{N_i}{N_h}$		prsgh. 0	$ ho_r: 1000 ho_s: 100 ho_g: 400 ho_h: 900$

NARLabs

Melting ice model

- Rain-snow (rain-graupel, rain-hail) mixture exists when rain and snow (graupel, hail) coexist.
- The fraction of rain or snow in the mixture form: $F = F_{max}[\min(q_s/q_r, q_r/q_s)]^{0.3}$
- The mixing ratio of the rain-snow mixture: $q_{rs} = F(q_r + q_s)$
- The water fraction within the rain-snow mixture: $f_w = q_r/(q_r + q_s)$
- The density of the rain-snow mixture: $\rho_{rs} = \rho_r f_w^2 + \rho_s (1 f_w^2)$

Prognostic q	F _{max,s}	F _{max,g}	F _{max,h}
$q_r q_s q_g$	0.5	0.4	
$q_r q_s q_h$	0.5		0.3
$q_r q_s q_g q_h$	0.35	0.25	0.2

Mixed-phase hydrometeor species q_{rs} , q_{rg} and/or q_{rh} are created.

NARLabs Backscattering amplitudes for H & V polarizations

NAR Labs Backscattering amplitudes for H & V polarizations

Horizontal: $ f_a = \alpha_a D^{\beta_a} (\text{mm})$	Vertical: $ f_b = \alpha_b D^{\beta_b}$ (mm)
--	---

	α_a		α_b	β_b
Rain	4.28×10^{-4}	3.04	4.28×10^{-4}	2.77
Snow	1.94×10^{-5}	3	1.91×10^{-5}	3
Wet snow	$(0.194 + 7.094f_w + 2.135f_w^2 - 5.225f_w^3) \times 10^{-4}$	3	$(0.191+6.916f_w - 2.841f_w^2 - 1.160f_w^3) \times 10^{-4}$	3
Graupel	8.1×10^{-5}	3	7.6×10^{-5}	3
Wet graupel	$\begin{pmatrix} 0.081 + 2.04f_{w} - 7.39f_{w}^{2} + 18.14f_{w}^{3} \\ -26.02f_{w}^{4} + 19.37f_{w}^{5} - 5.75f_{w}^{6} \end{pmatrix} \times 10^{-3}$	3	$ \begin{pmatrix} 0.076 + 1.74f_{w} - 7.52f_{w}^{2} + 20.22f_{w}^{3} \\ -30.42f_{w}^{4} + 23.31f_{w}^{5} - 7.06f_{w}^{6} \end{pmatrix} \times 10^{-3} $	3
Hail	1.91×10^{-4}	3	1.65×10^{-4}	3
Wet hail	$\begin{pmatrix} 0.191 + 2.39f_{w} - 12.57f_{w}^{2} + 38.71f_{w}^{3} \\ -65.53f_{w}^{4} + 56.16f_{w}^{5} - 18.98f_{w}^{6} \end{pmatrix} \times 10^{-3}$	3	$\begin{pmatrix} 0.165 + 1.72f_{w} - 9.92f_{w}^{2} + 32.15f_{w}^{3} \\ -56.0f_{w}^{4} + 48.83f_{w}^{5} - 16.69f_{w}^{6} \end{pmatrix} \times 10^{-3}$	3

NARLabs

Consider the cants of hydrometeors

	Mean of canting angles	SD of canting angles	
Rain	$\overline{\phi} = 0^{\circ}$	$\sigma = 0^{\circ}$	
Snow	$\overline{\phi} = 0^{\circ}$	$\sigma = 20^{\circ}$	
Wet snow	$\overline{\phi} = 0^{\circ}$	$\sigma = 20^{\circ}$	
Graupel / hail	$\overline{\phi}=0^{\circ}$	$\sigma = 60^{\circ}$	
Wet graupel / wet hail	$\overline{\phi} = 0^{\circ}$	$\sigma = 60^{\circ} (1 - cf_w)$ $c = 4q_{rg,rh} \text{ (when } q_{rg,rh} < 0.2 \text{ g kg}^{-1}\text{)}$ $0.8 \text{ (when } q_{rg,rh} \ge 0.2 \text{ g kg}^{-1}\text{)}$	
$A = \left\langle \cos^4 \phi \right\rangle = \frac{1}{8} \left(3 + 4\cos 2\overline{\phi} e^{-2\sigma^2} + \cos 4\overline{\phi} e^{-8\sigma^2} \right)$			
$B = \left\langle \sin^4 \phi \right\rangle = \frac{1}{8} \left(3 - 4\cos 2\overline{\phi} e^{-2\sigma^2} + \cos 4\overline{\phi} e^{-8\sigma^2} \right)$			
$C = \left\langle \sin^2 \phi \cos^2 \phi \right\rangle = \frac{1}{8} \left(1 - \cos 4\overline{\phi} e^{-8\sigma^2} \right) \qquad C_k = \left\langle \cos 2\phi \right\rangle = \cos 2\overline{\phi} e^{-2\sigma^2}$			

NARLabs Diagnose gamma distribution parameters

Gamma function:
$$\int_{0}^{\infty} t^{b} e^{-at} dt = \frac{\Gamma(b+1)}{a^{b+1}}$$
Total number concentration: $N_{t} = \int_{0}^{\infty} N_{0} D^{\mu} e^{-\Lambda D} dD = N_{0} \frac{\Gamma(\mu+1)}{\Lambda^{\mu+1}}$
Mixing ratio: $q = \frac{\rho \int_{0}^{\infty} \frac{4}{3} \pi \left(\frac{D}{2}\right)^{3} N_{0} D^{\mu} e^{-\Lambda D} dD}{\rho_{a}}$
 $\frac{\rho_{a} q}{\rho} = \frac{\pi N_{0}}{6} \frac{\Gamma(\mu+4)}{\Lambda^{\mu+4}} = \frac{\pi N_{t} \Gamma(\mu+4)}{6\Gamma(\mu+1)\Lambda^{3}}$
Single-moment scheme: $\Lambda = \left[\frac{\pi \rho N_{0} \Gamma(\mu+4)}{6\rho_{a} q}\right]^{\frac{1}{\mu+4}}$
Double-moment scheme: $\Lambda = \left[\frac{\pi \rho N_{t} \Gamma(\mu+4)}{6\rho_{a} q \Gamma(\mu+1)}\right]^{\frac{1}{3}}$

Calculate Z_H , Z_{DR} and K_{DP}

$$\begin{split} Z_{hh} &= \frac{4\lambda^4}{\pi^4 |K_w|^2} \int_0^\infty (A|f_a|^2 + B|f_b|^2 + 2C|f_a||f_b|) N_0 D^{\mu} e^{-AD} dD \\ &= \frac{4\lambda^4 N_0 \Gamma(2\beta_a + \mu + 1)}{\pi^4 |K_w|^2} \left[\frac{6\rho_a q}{\pi N_0 \Gamma(\mu + 4)\rho} \right]^{\frac{2\beta_a + \mu + 1}{\mu + 4}} (A\alpha_a^2 + B\alpha_b^2 + 2C\alpha_a \alpha_b) \\ Z_{vv} &= \frac{4\lambda^4}{\pi^4 |K_w|^2} \int_0^\infty (B|f_a|^2 + A|f_b|^2 + 2C|f_a||f_b|) N_0 D^{\mu} e^{-AD} dD \\ &= \frac{4\lambda^4 N_0 \Gamma(2\beta_b + \mu + 1)}{\pi^4 |K_w|^2} \left[\frac{6\rho_{air} q}{\pi N_0 \Gamma(\mu + 4)\rho} \right]^{\frac{2\beta_b + \mu + 1}{\mu + 4}} (B\alpha_a^2 + A\alpha_b^2 + 2C\alpha_a \alpha_b) \\ K_{dp} &= \frac{180\lambda}{\pi} \int_0^\infty C_k \operatorname{Re}(f_a - f_b) N_0 D^{\mu} e^{-AD} dD \\ &= \frac{180\lambda N_0 C_k}{\pi} \left\{ \alpha_a \Gamma(\beta_a + \mu + 1) \left[\frac{6\rho_a q}{\pi N_0 \Gamma(\mu + 4)\rho} \right]^{\frac{\beta_a + \mu + 1}{\mu + 4}} - \alpha_b \Gamma(\beta_b + \mu + 1) \left[\frac{6\rho_a q}{\pi N_0 \Gamma(\mu + 4)\rho} \right]^{\frac{\beta_b + \mu + 1}{\mu + 4}} \right\} \\ Z_H &= 10 \log \left(\sum_x Z_{hh,x} \right) \qquad Z_{DR} &= 10 \log \left(\sum_x Z_{hh,x} / \sum_x Z_{vv,x} \right) \qquad K_{DP} = \sum_x K_{dp,x} \end{split}$$

Simulation domains

Simulation period

NAR Labs NoDA with various microphysics: Z_H

WDM6 gives the least over-forecasting of Z_H with a clear structure of spiral rainbands.

NAR Labs NoDA with various microphysics: Z_{DR}

Similar result with respect to Z_{DR} .

NARLabs **NoDA with various microphysics:** K_{DP}

0.9

0.8

0.8

0.7

0.6

0.5

0.4

0.4

0.3

0.2

0.0

0.0

0.00

Similar result with respect to K_{DP} . WDM6 is selected for DA experiments.

	Assimilated radar variables
NoDA	
V	V _r
VZ	$V_r Z_H$
VD	$V_r Z_{DR}$
VK	V _r K _{DP}
VZD	$V_r Z_H Z_{DR}$
VZK	$V_r Z_H K_{DP}$
VZKD	$V_r Z_H Z_{DR} K_{DP}$

NAR Labs Quantitative precipitation forecasting (QPF)

- Generally speaking, radar DA greatly improves QPF in the first 3 hours, but deteriorates that in the following 3 hours.
- Additional assimilation of Z_H is beneficial for any combination of the rest variables.
- K_{DP} plays a more important role than Z_{DR} .
- Assimilating all variables (VZKD) is a good choice.

NARLabs Quantitative precipitation forecasting (QPF)

■ In the first 3 hours:

Radar DA leads to more accurate intensity and distribution of QPF in northern Taiwan.

 In the following 3 hours: The deterioration results from the over-forecasting in southern Taiwan using the analysis ensemble mean beyond RCWF's coverage.

NARLabs

Summary

- An observation operator for Z_H , Z_{DR} and K_{DP} is incorporated into a WRF-LETKF system and tested with a typhoon case.
- WDM6 is found to give the least over-forecasting with a clear structure of spiral rainbands in this typhoon case.
- Preliminary results:
 - 1. With the limited coverage of RCWF, radar DA greatly improves QPF in northern Taiwan for 3 hours.
 - 2. However, the analysis ensemble mean beyond RCWF's coverage results in worse QPF than NoDA in southern Taiwan.
 - 3. It is a good choice to assimilate all variables, among which Z_H and K_{DP} are more important than Z_{DR} .
- Sensitivity tests in future prospects:
 - 1. Assimilation of other observations, including radars in southern Taiwan
 - 2. Assimilation strategies
 - 3. Source of the background ensemble

Thank you very much!