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Ø 	SCALE-LETKF	

Ø 	Precipita4on	assimila4on		
	(Lien	et	al.	2013,	2016a,b,	Kotsuki	et	al.	2017)	



SCALE	model		(Nishizawa	et	al.	2015;	Sato	et	al.	2015)	

l  Scalable	Compu4ng	for	Advanced	
Library	and	Environment	(SCALE).	

l  An	open-source	basic	library	for	
weather	and	climate	simula4on.	

l Developed	by	Computa4onal	
Climate	Science	Research	Team.	

l  SCALE-RM:	A	regional	NWP	model	
based	on	SCALE.	

hUp://scale.aics.riken.jp/	



SCALE-LETKF			(Lien	et	al.	2017)	

									hUps://github.com/gylien/scale-letkf	

l  A	Local	Ensemble	Transform	Kalman	Filter	(LETKF)	data	assimila4on	package	with	
the	SCALE-RM.	

l  The	SCALE-LETKF	is:	
l  A	configurable	and	scalable	regional	data	assimila4on	system.	
l  Featured	for	the	LETKF	scheme,	which	is	not	focused	in	other	community	data	

assimila4on	code	(such	as	DART	and	Community	GSI).	
l  Tested	on	a	very	large	supercomputer	(i.e.,	the	K	computer),	aware	of	the	

efficiency	of	high	performance	compu4ng.	



Experimental	near-real-time	SCALE-LETKF	

l  18-km	resolu4on;	5760	x	4320	km	area;	50	members	
l  6-hour	cycle;	5-day	determinis4c	forecasts	
l  Test	the	stability	of	the	system.	
l  Provide	important	guidance	on	the	performance	of	the	model		

and	the	data	assimila4on	se_ngs.	



An	example	of	5-day	forecasts	
(Typhoon	NANGKA;	12:00	UTC	July	12,	2015)	



	
Ø 	SCALE-LETKF	

Ø 	Precipita4on	assimila4on		
	(Lien	et	al.	2013,	2016a,b,	Kotsuki	et	al.	2017)	



Satellite	precipitation	estimates	
l  In	recent	years,	several	satellite-based	near-real-4me	global	precipita4on	
es4mates	have	been	available:	
l  TRMM	Mul4satellite	Precipita4on	Analysis	(TMPA)	/	
Integrated	Mul4-satellitE	Retrievals	for	GPM	(IMERG)	

l  Global	Satellite	Mapping	of	Precipita4on	(GSMaP)		

hUp://sharaku.eorc.jaxa.jp/GSMaP/	



Assimilation	of	precipitation	data	

l Past	studies	of	precipita4on	assimila4on	show	good	analyses,		
but	the	model	forgets	about	the	changes	soon	aber	the		
assimila4on	stops.	
l  The	change	in	moisture	is	not	an	efficient	way	to	update	the	dynamical	
variables	that	primarily	determine	the	evolu4on	of	the	forecast	in	NWP	
models.	

l  Flow-dependent	covariances	between	the	precipita4on	variable	and	
other	dynamical	variables	are	important.	
à	EnKF	

l More	difficul4es:	
l  The	non-Gaussianity	of	the	precipita4on	variable	
l  The	large	model	and	observa4on	errors.	



:	CDF	of	Gaussian	distribu4on	:	CDF	of	original	variable		

:	original	variable	(mm/6hr)		 :	Transformed	variable	(sigma)	

ー:	Model	
ー:	Obs.	

PDF	

CDF	

Step	0:	Obtain	PDF	&	CDF		

Original	variable	 (Lien	et	al.	2013,	2016b)	

Gaussian	transformation	



ー:	Model	
ー:	Obs.	

PDF	

CDF	

Original	variable	 (Lien	et	al.	2013,	2016b)	

Step	0:	Obtain	PDF	&	CDF	
	
Step	1:	Compute				

e.g.,		
y	=1mm/6hr		

Obs	F(y)	

Model	F(y)	

Gaussian	transformation	

:	CDF	of	Gaussian	distribu4on	:	CDF	of	original	variable		

:	original	variable	(mm/6hr)		 :	Transformed	variable	(sigma)	



ー:	Model	
ー:	Obs.	

PDF	

CDF	

Original	variable	 Transformed	variable	 (Lien	et	al.	2013,	2016b)	

Step	0:	Obtain	PDF	&	CDF	
	
Step	1:	Compute	

e.g.,		
y	=1mm/6hr		

Obs	F(y)	

Model	F(y)	

Gaussian	transformation	

:	CDF	of	Gaussian	distribu4on	:	CDF	of	original	variable		

:	original	variable	(mm/6hr)		 :	Transformed	variable	(sigma)	



ー:	Model	
ー:	Obs.	

PDF	

CDF	

Original	variable	 Transformed	variable	 (Lien	et	al.	2013,	2016b)	

Step	0:	Obtain	PDF	&	CDF	
	
Step	1:	Compute	
	
Step	2:	Compute		

Obs	ȳ	

Model	ȳ	

CDF	

Obs	F(y)	

Model	F(y)	

e.g.,		
y	=1mm/6hr		

Gaussian	transformation	

:	CDF	of	Gaussian	distribu4on	:	CDF	of	original	variable		

:	original	variable	(mm/6hr)		 :	Transformed	variable	(sigma)	



Original 
variable 

Transformed 
variable 

Gaussian	transformation	



average:			
sigma:						
skewness:		
kurtosis:		

-0.015	
0.729	
0.418	
0.696	

sigma	

average:			
sigma:						
skewness:		
kurtosis:		

0.080	
2.837	
6.372	
93.91	

mm/6hr	

Obs-Guess	
	(GT)		

Obs-Guess	
	(orig)		

Sampling	period	:	2014110100	-	2014110118	

wo	Gaussian-TransformaMon	 w	Gaussian-TransformaMon	

More	Gaussian		

(Kotsuki	et	al.	2017,	JGR-A)	

Gaussian	transformation:	
Error	distribution	



Construction	of	the	precipitation	CDF	

l The	CDF	of	precipita4on	variables	is	empirically	determined	based	on	the	
model/observa4on	climatology	at	each	grid	point.			
It	requires	a	long	period	of	model/observa4on	data.	

l Lien	et	al.	2013,	2016a,b:			Using	a	fixed	1-year	climatology	

l Kotsuki	et	al.	2017:			Using	the	past	month	data	prior	to	the		
																																					assimila4on	4me	



(Spin-up) (After the spin-up) (11-month average      
after the spin-up period) 

RAOBS:						Assimilate	rawinsonde	observa4ons	
GT:														Assimilate	rawinsondes	+	uniformly	distributed	global	precipita4on	
Qonly:								Same	as	GT,	but	only	update	moisture	field	by	precipita4on	assimila4on	

(Other	variables	show	similar	results)	

Analysis	 5-day	forecast	

Lien	et	al.	2013:	
SPEEDY	model	/	idealized	experiments	

GT	



Global	results						Solid	lines:	RMS	errors					Dashed	lines:	Biases	

NT	

GTcz	and	GTbz	

Raobs	
Log	

�  No	transformaMon	(NT)	gives	very	bad	results.	
�  Logarithmic	(Log)	transforma4on	leads	to	marginal	results.	

�  Good	for	moisture,	but	bad	for	temperature.	
�  Gaussian	transformaMon	(GTcz	and	GTbz)	lead	to	clear	posi4ve	
impacts.	

5-day	forecasts	

Lien	et	al.	2016a,	b:	
GFS	model	/	TMPA	observation	



Kotsuki	et	al.	2017:	
NICAM	model	/	GSMaP	observation	

Spin-up	period	

ー:	CTRL:				Radiosondes	ONLY	
ー:	TEST:　Radiosondes	+	GSMaP/Gauge	(every	5x5	grids)	

Improved!!	



Summary	of		
the	precipitation	assimilation	studies	

l We	successfully	assimilated	precipita4on	with	global	models,		
in	both	idealized	OSSEs	and	a	realis4c	model	and	observa4ons,		
using	the	LETKF	and	the	Gaussian	transforma4on.	
l  The	impacts	are	seen	in	both	analyses	and	5-day	forecasts.	

	

l Gaussian	transforma4on	is	beneficial	to	the	precipita4on	assimila4on:	
l  Gaussian	transforma4on	based	on	the	climatology	does	produce	more	
Gaussian	background	error	distribu4on	of	precipita4on.	

l  Applying	Gaussian	transforma4on	separately	to	model/	observa4on	
precipita4on	can	correct	the	bias.	



Next…	the	intern	study	

l Precipita4on	assimila4on	in	a	regional	mesoscale	model?	

l Impact	of	precipita4on	assimila4on	on	typhoon	analyses	and	
forecasts?	
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Outline 
1.	MoMvaMon	

3.	Experiment	Design	

4.	Results	
4.1		Impact	of	GSMaP	observa=ons		

3.1	Overview	of	Typhoon	cases	

•  Adjustments of the SLP/hydrometeors 
•  Impact on TC track & intensity forecast 

4.2	Sensi=vity	to	the	QC	schemes	
•  Total number of precipitating members 
•  Assimilating ocean obs only 

5.	Summary	
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3.3	Precip.	CDFs	for	Gaussian	Transforma=on	

2.	ImplementaMon	of	Precip.	DA	

3.2	NWP	&	LETKF	seOngs	



Motivation 
•  Lien	 et	 al.	 (2013)	 showed	 with	 the	 SPEEDY	 model	 that	 assimila4ng	

precipita4on	can	 improve	both	 the	analysis	 and	medium-range	 forecast	
for	almost	all	variables.		

•  Consistent	posiMve	results	with	realis4c	global	models	and	observa4ons	

•  Can	we	apply	the	same	methodology	to	the	mesoscale	regional	model?	

Apply	the	Gaussian	transforma4on	to	the	model	&	obs	precipita4on	

Directly	modify	the	dynamical	variables	through	an	EnKF	system	

ü  GFS-LETKF/TMPA	(Lien	et	al.,	2016b)	

ü  NICAM-LETKF/GSMaP	(Kotsuki	et	al.,	2017)		

•  Specifically,	can	it	provide	addi4onal	benefits	to	the	Typhoon	forecast?	

Ques=on:		

24	



Implementation of Precip. DA component 
•  The	SCALE-LETKF	system	(Lien	et	al.,	2017)	doesn’t	have	the	precipita4on	

DA	component	yet.	So	we	need	to	implement	it	first.	
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thin_gsmap.f90 
thin_imerg.f90 
accu_scale.f90 
ppcdf.f90 

mod_scale_merge.f90 

mod_h5.f90 
mod_nc.f90 

pp_utils.f90 

Precip.	Preprocessing	UMliMes:	
for	both	JAXA	GSMaP	&		

NASA	IMERG	

1.	obs	thinning		
2.	precip.	CDF	crea4on	
3.	Gross	QC	

co
m

m
on

_p
re

ci
p.

f9
0 

Precip.	DA	component:		
&PARAM_LETKF_PRECIP	 		

		USE_PRECIP											=	.true., 		
	!--PPCDF_IN-- 		
		NPPX																	=	240, 		
		NPPY																	=	180, 		
		NCDF																	=	200, 		
		PPZERO_THRES									=	1.D-3, 		
		GAUSSTAIL_THRES						=	1.D-3, 		
		OPT_PPTRANS										=	3, 		
		OPT_PPOBSERR									=	3,		
		LOG_TRANS_TINY							=	0.6D0, 		
		MIN_OBSERR_RAIN						=	0.3D0,	 		
		OBSERR_RAIN_PERCENT		=	0.5D0,	 		
		OBSERR_RAIN_LT							=	0.18D0,	 		
		OBSERR_RAIN_GT							=	0.5D0,			
		RAIN_SLOT_START						=	5,	 		
		RAIN_SLOT_END								=	10,	 		
		MIN_RAIN_MEMBER						=	75 		
		/ 		

Obsope 

LETKF 

Accumulate	model	
precipita4on	at	each	

subdomain	

SCALE-LETKF	system	

Precip.	w/o	transforma4on	
Precip.		w/	Log	Trans.	
Precip.		w/	Gaussian	Trans.	

config.nml.letkf:	



Obs Operators / Obs 
We	assimilate	the	accumulated	6-hr	precipita4on:	

1.	Thinning:	

2.	AggregaMon:		Accumulate	hourly	GSMaP	data	for	6	hours	(7	slots)	

t0	 t1	 t2	 t3	t-3	 t-2	 t-1	
GSMaP		

6-hour	precip.	obs	

  
pp6hr

GSMaP = 0.5× pp−3 + ppi
i=−2

2

∑ + 0.5× pp3
26	

t-6	

SCALE		
6-hour	precip	fcst.	

  
pp6hr

SCALE = ppi
i=−2

3

∑

t0	 t1	 t2	 t3	t-3	 t-2	 t-1	t-6	

Obs	Operator	H(x):	

Obs	yo:	

keep	only	one	GSMaP	hourly	obs	per	model	grid	
GSMaP	has	higher	res.	(10km)	than	model	res.	(36km)	



Experiment Design: Overviews of Two TCs in 2015 
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Nangka	Chan-hom	

Figures from http://agora.ex.nii.ac.jp 

6hr	DA	cycles	start	from	0600UTC,	July	9	to	0000UTC,	July	17	



Experiment Settings: NWP Model 
Model	Domains	

SCALE	Se]ngs	 D01	

Resolu4on	 	36km	

Domain	size	 240×180	grids,	36	levels	(~28km)	

BC		 GFS	FNL	every	6	hours	

Microphysics		 TOMITA08	

Radia4on		 MSTRNX	

Cumulus	Para.	 w/o	and	w/	KF	
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•  We	at	 first	 followed	 configura4ons	 of	 the	 SCALE	NRT	 system	 (w/o	 KF).	
However,	the	precipita4on	fields	w/o	KF	at	36km	resolu4on	is	not	similar	
to	the	GSMaP	obs.		

•  Low	resolu4on,	in	order	to	get	some	results	within	my	internship	period.	



Experiment Settings: LETKF 
LETKF	se]ngs	 CTL	 GSMaP	

Ensemble	size	 	100	

Infla4on	 Mul4plica4ve	infla4on	(1.25)	
RTPP	(0.8)	

Ver4cal	localiza4on	scale	 0.3log(pressure)	

Horizontal	localiza4on	scale	 400km	(PrepBUFR)/250km	(GSMaP)	

Obs	assimilated.	 PrepBUFR	 PrepBUFR	+	GSMaP	

Threshold	for	precipita4on	 ≥		0.001mm	(6hr)-1	

Precipita4on	CDFs	 JUN	20	~	JUL	6	

Height	of	precipita4on	obs.	 850mb	

QC	by	min.	number	of	precip.	members	 75/100	(75%)	
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0000UTC	
20	June	

0000UTC	
9	July	

0600UTC	
20	June	

1200UTC	
20	June	

Only	assimilate	PrepBUFR	 Exp.	GSMaP	

…	 0600UTC	
9	July	

Exp.	CTL	

0000UTC	
17	July	

Spin-up	periods:	



Construction of the Precipition CDFs 
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Model	CDFs	/GSMaP	CDFs	

CDF	for	GSMaP	&	SCALE	at	one	model	grid	
Max:	335.468;		
Pr(ppzero)=0.63	(less	frequent)	
Max:	162.986;	
Pr(ppzero)=0.40	(more	frequent)	

An	example:	

0000UTC	
20	June	

0000UTC	
9	July	

0600UTC	
20	June	

1200UTC	
20	June	

Only	assimilate	PrepBUFR	

Exp.	GSMaP	

…	 0600UTC	
9	July	

0000UTC	
17	July	

Spin-up	periods:	

•  If	 fixed	 at	 the	 same	 CDF	 value,	we	 can	
get	 the	 snapshots	 of	 the	 model	 &	
GSMaP	 precipita4on	 values	 for	 the	
en4re	domain.	



Comparison of the Precipitation CDFs 
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				SCALE	w/	KF	 SCALE	w/o	KF	 GSMaP	
Pr
(p
pz
er
o)
	

More	frequent	 less	frequent	

Pr
ec
ip
ita

Mo
n	

at
	C
DF

=0
.7
5	

Smaller	precip.	 Larger	precip.	

In	addiMon,	with	
KF,	the	maxima	
of	model	precip.	
also	decreases	
(not	shown	
here)	

Pr
ec
ip
ita

Mo
n	

at
	C
DF

=0
.9
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1st	cycle	 9th	cycle	Cycle	#	1-9	

CTL_GUES	 CTL_ANAL	

GSMaP_GUES	 GSMaP_ANAL	

Impact of GSMaP: Adjustments of the SLP  

Source Min.	SLP	(mb)		

Background 973.8 

CTL_ANA 967.4 

GSMaP_ANA 960.2 

JMA	Best	Track	 960 

Source Min.	SLP	(mb)		

CTL_ANA 997.8 

GSMaP_ANA 985.7 

JMA	Best	Track	 945 CH
AN

-H
O
M
	

N
AN

G
KA
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CTL_ANA	 GSMaP_ANA	 GMI_L2_Retrievals	

Adjustments of the Hydrometeors  

1800UTC		JUL12	
CWP	

IWP	

1800UTC		JUL12	 1731UTC		JUL12	
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Accumulated 1-hr  Precipitation Forecast  

CTL_6HR_FCST	 GSMaP_6HR_FCST	 GSMaP_OBS	
1200UTC	JUL	16	1200UTC	JUL	16	1200UTC	JUL	16	

•  6-hr	 forecast	 ini4alized	 at	 0600UTC	 JUL	 16,	 and	 validated	 at	
1200UTC,		before	Nangka	made	the	landfall	(1400UTC)	

1200UTC	0600UTC	 1100UTC	
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TC Track Forecast Error 

For	the	first	several	cycles,	Nangka	moves	southward	in	the	Exp.	CTL,	
which	does	not	occur	in	Exp.	GSMaP.		

GSMaP	CTL	

Thick	black	line:	Best	track	
Color	lines:	120-hr	forecasts	ini4alized	at	different	4me	(warmer->	later	INIT)	



Averaged TC Track Forecast Error 
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FCST	error	of	CHAN-HOM	 FCST	error	of	NANGKA	

Solid: CTL 
Dashed: GSMaP 



120-hr Intensity Forecast Initialized at Different Time 
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CHAN-HOM	 NANGKA	

CTL CTL 

GSMaP GSMaP 

Thick	black	line:	Best	track	
Color	lines:	120-hr	forecasts	ini4alized	at	different	4me	



Averaged TC Intensity Forecast Error 
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FCST	error	of	CHAN-HOM	 FCST	error	of	NANGKA	

Solid: CTL 
Dashed: GSMaP 



39	

    Sensitivity to the QC schemes 
Number	of	PrecipitaMng	members	(GSMaP_QC50):	

2.	We	assimilate	GSMaP	when	at	least	75%	members	precipitate	(~0.75	in	Lien	et	
al.,	2016b;	~0.72	in	Kotsuki	et	al.,	2017).	The	ensemble	size	in	those	studies:	~40.		

1.	Assimila4on	of	GSMaP	helps	to	intensify	Nangka.	However,	not	strong	enough.	

=>	Will	loosing	this	QC	to	50	further	Improve	the	forecast?		

GSMaP	over	land	(GSMaP_OCN):	
1.	 From	 the	 perspecMve	 of	 obs:	 Lv3	 GSMaP	 relies	 on	 Lv2	 MW	 retrievals.	
However,	 the	 quality	 of	MW	 precipita4on	 over	 land	 is	 worse	 than	 those	 over	
ocean,	 since	 precipita4on	 referred	 from	 the	 IWP	 from	 High-Frequency	 MW	
channels.		
2.	From	the	perspecMve	of	model:	Lien	et	al.	2016a	show	that	model	simula4on	
over	land	is	not	strongly	correlated	to	the	obs.	

=>	What	if	we	only	assimilate	obs	over	ocean?		

3.	But	we	have	100	members.		
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Accumulated 1-hr  Precipitation Forecast  

CTL	 GSMaP	

GSMaP_OBS	

1200UTC	JUL	16	

1200UTC	JUL	16	1200UTC	JUL	16	

GSMaP_QC50	 GSMaP_OCN	
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    Sensitivity to the QC schemes 

FCST	error	of	CHAN-HOM	 FCST	error	of	NANGKA	
Solid: CTL 
Dashed: GSMaP 
Dashed: GSMaP_OCN 
Dashed: GSMaP_QC50 
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    5-day Forecast RMSE of the Entire Domain 
RM
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Summary 
•  This	 study	 inves4gates	 the	 impact	 of	 precipita4on	 data	within	 a	 regional	

NWP	model.	 The	 precipita4on	DA	 component	 is	 implemented	within	 the	
SCALE-LETKF	system.	

•  We	conduct	two	case	studies	on	TC	Chan-hom	&	Nangka	in	2015.	In	both	
cases,	6-hr	accumulated	GSMaP	data	are	assimilated	with	the	Gaussian	
Transforma4on.	The	preliminary	results	show	that:	
ü  The	SLP/hydrometeor	analysis	with	precip.	DA	is	more	close	to	obs.	

ü  3-day	typhoon	track	forecast	error	are	decreased.	

ü  By	loosing	the	QC	of	precipita4ng	members,	and	removing	land	obs,	we	could	further	
improve	the	TC	track	forecasts.		

ü  5-day	RH	forecast	at	surface	are	improved.	
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Limitations 

•  The	resolu4on	of	the	current	model	simula4on	is	low.	

•  Both	cases	does	not	start	from	the	genesis	phase.	
36km->18km	

New	experiment	star4ng	before	the	genesis	

•  The	obs	might	s4ll	be	too	dense.	
Check	the	ensemble	spread	

•  Too	aggressive	QC	of	the	GSMaPs	over	land.		
Further	refine	QCs	

•  Prepara4on	of	the	CDFs	requires	a	long	period.	

Current	experiment	se]ngs:	

Methodology:	

•  Model-grid-based	CDF	might	be	not	well	suited	for	the	TC	applica4ons.	


