

Impact of assimilating humidity sounder radiances with the NICAM-LETKF system

Krishnamoorthy Chandramouli¹ and Koji Terasaki²

1: Indian Institute of Technology Madras 2:RIKEN, Advanced Institute for Computational Science

RIKEN ADVANCED INSTITUTE FOR COMPUTATIONAL SCIENCE

NICAM: Non-hydrostatic ICosahedral Atmospheric Model

Grid division level 0 is the original lcosahedron.

The horizontal resolution can be increased by splitting one triangle into four triangles.

Grid division level	Horizontal resolution		
6	112 km		
7	56 km		
8	28 km		
9	14 km		
10	7 km		
11	3.5 km		
12	1.7 km		
13	0.87 km		

Conventional observations (NCEP PREPBUFR)

AMSU-A (after thinning)

Bias correction airmass bias scan bias

$\mathbf{y} - \mathbf{H}\mathbf{x}^f - \mathbf{p}^T \mathbf{\beta} - \mathbf{b}_{scan}$

Estimating airmass bias

Ensemble-based variational bias correction method

$$\delta \boldsymbol{\beta} = \left(\mathbf{B}_{\boldsymbol{\beta}}^{-1} + \mathbf{p} \mathbf{R}^{-1} \mathbf{p}^{\mathrm{T}} \right)^{-1} \mathbf{p} \mathbf{R}^{\mathrm{T}} (\mathbf{y} - \mathbf{H} \overline{\mathbf{x}^{a}} - \mathbf{p}^{\mathrm{T}} \boldsymbol{\beta})$$

Predictor

Integrated weighted lapse rate (1000-200 hPa)

Integrated weighted lapse rate (200-50 hPa)

Surface temperature

Satellite zenith angle

Estimating scan bias

$$b_t^{scan_{new}}(n) = \alpha b_{t-1}^{scan}(n) + (1-\alpha) \left(b_t^{scan_{est}}(n) - b_{t-1}^{scan}(n) \right)$$

AMSU Scanning Geometry and Resolution

(http://tropic.ssec.wisc.edu/real-time/amsu/explanation.html)

- AMSU-A observations have different biases at each scan position
- Estimating scan bias from the innovation statistics

RIKEN ADVANCED INSTITUTE FOR COMPUTATIONAL SCIENCE

Estimated bias

Ch. 6 of NOAA-18

8

RIKEN ADVANCED INSTITUTE FOR COMPUTATIONAL SCIENCE

o-b (AMSU-A)

Global RMSD for temperature (vs. ERA-interim)

Summary

- Terasaki et al. (2015) introduced NICAM-LETKF systems
 - Assimilating only conventional observations (NCEP PREPBUFR)
- Assimilating satellite observations (AMSU-A)
 - Developing the observation operator for satellite radiances with RTTOV
 - Adaptively estimating the airmass and scan biases
 - Analysis becomes more accurate in the troposphere

11

Why Humidity Sounder?

- AMSU-A radiances are sensitive to temperature.
- There are a few observations of humidity over ocean.
- It is expected to have a positive impact on the humidity analysis by assimilating humidity sounder in the NICAM-LETKF system

RIKEN ADVANCED INSTITUTE FOR COMPUTATIONAL SCIENCE

Impact of assimilating humidity sounder radiances with the NICAM-LETKF system

Krishnamoorthy Chandramouli Indian Institute of Technology Madras, India. Intern supervisor : Koji Terasaki AICS RIKEN, Kobe, Japan.

Introduction

- Miyoshi et al. (2010)
- Compared LETKF and 4D-Var using JMA global model.
- Developed the adaptive bias correction for satellite radiances.
- Showed LETKF and 4D-Var have comparable performance.
- Better handling of satellite observations for operational use of LETKF
- Terasaki et al. (2015)
- Implemented LETKF with NICAM (Assimilating only PREPBUFR data)
- Direct use of NICAM icosahedral grid (ICO-LETKF).
- .ICO-LETKF showed overall acceleration in computation.
- Terasaki and Miyoshi (2017)
 - Assimilated AMSUA radiances with the NICAM-LETKF system.
 - Online estimation of scan and air-mass bias for radiance observations.
 - Showed considerable improvement in the analysis.
- Goal : To assimilate MHS radiances with the NICAM LETKF system

MHS Characteristics

- 3 Channels centered around the water vapor line (183.31 GHz)
- 2 window channels (H1 and H2)
- Possible to get the humidity signatures from H3, H4 and H5

Instrument	IFOV type	IFOV size	Sampling interval (across- track)	IFOV size (nadir)	Samples per scan line	Scan separati on	Swath width
		(deg)	(deg)	(km)		(km)	(km)
AMSU-A	circular	3.3	3.33	47.63	30	52.69	± 1026.3 1
MHS	circular	1.1	1.11	15.88	90	17.56	± 1077.6 8

Courtesy: EUMETSAT

Quality control of MHS radiances

- RTTOV model as forward operator
- QC of MHS radiances is similar to the operational scheme used for GSI
 - Step 1: Calculation of Liquid Water Path (LWP)_{index} and Total Precipitable Water (TPW)_{index} (LWP_{Index} = F(Ch1_{o-b},Ch2_{o-b}))
 - Step 2: Remove : **TPW** index > 1
 - Step 3: Remove pixels with $abs(O-B)_i > 3e_i$
 - Observations from 1-15 and 75-90 FOVs are not considered
- Horizontal thinning distance is set to 140 km (Refer to Terasaki (2015) and Terasaki (2017) for more details on horizontal thinning)
- Superobing of MHS over 3x3 grid box (Only 20 FOVs)

4

Internship report

Bias predictors for MHS

Miyoshi et al. (2010)

- 1. IWLR
- 2. Surface Temperature
- 3. $1/\cos\theta$
- 4. constant

Kazumori (2014) (JMA)

- 1. 2 IWLR
- 2. Surface Temperature
- 3. $1/\cos\theta$

ECMWF

- 1. 1000 300 hPa thickness
- 2. 200 50 hPa thickness
- 3. 10 1 hPa thickness
- 4. 50 5 hPa thickness

NCEP GSI

- 1. 2 IWLR
- 2. Surface Temperature
- 3. $1/\cos\theta$
- 4. TCWV

Present study

- Exp 1 4 Predictors
- Exp 2 3 Predictors
- Exp 3 2 Predictors

Internship report

8

Internship report

- In all the three cases there is a considerable improvement in the analysis after assimilating MHS radiances.
- The humidity bias between 600 400 hPa layer has reduced considerably.
- Fast convergence of bias predictor coefficients for channel 3 and 4.
- Further experiments on assimilating MHS radiances, use only 2 predictors for air-mass bias correction (ECMWF)
 - IWLR (1000 300 hPa)
 - IWLR (200 50 hPa)

A Case Study

Indian Summer Monsoon

- Monsoon surface wind reversal
- The onset of ISM denotes the beginning of primary rainy season in India
- Up to 70% of Indian rainfall from ISM (June to September)
- Indian monsoon tied to the socioeconomic life

From Tropical Meteorology by T. N. Krishnamurthi

The case of Indian Summer Monsoon Onset

- Test case: Indian monsoon onset 2012
- Actual onset on 5th June 2012 (IMD monsoon report)
- ISM onset date declared by IMD using subjective methods.
- Various onset indices have been developed in the recent times
- Here in this study we report the onset using the ISM index developed by Wang et al. (2009)

Indices for monsoon onset

ISM index : U850(1) – U850(2)

Onset Circulation Index (OCI):

Average 850hPa 'U' wind over lat-lon box : 5–15N, 40–80E

"The date of onset is defined as the first day when OCI exceeds 6.2 m/s, with the provision that the OCI in the ensuing consecutive 6 days also exceeds 6.2 m/s" – Wang et al. 2009

NICAM-LETKF Analysis experiments

- 3 months analysis with AMSUA and MHS radiances
- Forecast experiments with NICAM
- ISM index calculated for the above analysis experiment and validated with the ERA Interim data
- Both MHS and AMSUA analysis captures the ISM index variation

NICAM forecast experiments

NOAA OBS

Internship report

23

Internship report

24

Conclusions

- The addition of MHS radiance to the existing NICAM-LETKF system improves the humidity analysis fields especially in the middle troposphere.
- Several set of predictors for MHS radiance bias correction were tested and for the case study only 2 predictors were used.
- ISM onset index based on the analysis from MHS and AMSUA assimilation compares well with the ERA Interim data
- The analysis of the NICAM model forecast of ISM onset is underway.
- Comparison of the forecast initialized with MHS and AMSUA analysis is being done.

Limitations:

- Only MHS pixels over ocean is assimilated
- Objective definition of Indian Monsoon Onset based on the model OLR values
- Owing to the resolution of NICAM model, precipitation values were not compared for the Monsoon experiments

Thank you for your attention !