Data Assimilation of Atmospheric Chemistry: Past, Present, and Future

Tsuyoshi Thomas Sekiyama

Meteorological Research Institute, Japan Meteorological Agency

Data Assimilation Seminar @AICS, Kobe –December 11, 2017–

Data Assimilation of Atmospheric Chemistry: Past, Present, and Future

Contents

What's atmospheric chemistry (AC) ?
 → difference between NWP and AC modeling

Dawn of AC data assimilation
 From the 1990s to the 2000s

Status quo of AC data assimilation
 contribution to environment and health issues

Future of AC data assimilation

→ integration with NWP

mineral dust (Kosa)

black/organic carbons (biomass)

sea-salt

sulfate (≈PM2.5)

- Not classical chemistry.
- Rather, geophysics or meteorology.
- Investigates the production, reaction, loss, advection, diffusion, emission, and deposition of atmospheric constituents.
- Targets all the gas molecules and aerosol particles in the troposphere, stratosphere, and mesosphere.
 → for example: ozone, greenhouse gases, black carbon, mineral dust, volcanic ash, sulfate particles (≈PM2.5), etc.

What's different from weather research?

Difference #1 between NWP and AC modelingComplicated Emissions

Methane (CH₄) emission

Difference #1 between NWP and AC modelingComplicated Emissions

Nitrogen oxides (NO_x) emission

Difference **#1** between NWP and AC modeling

Complicated Emissions

Ammonia (NH₃) emission

Difference #1 between NWP and AC modelingComplicated Emissions

Sulfur dioxide (SO₂) emission

Difference #1 between NWP and AC modelingComplicated Emissions

Carbon monoxide (CO) emission

We want to know the true emissions.

0

Difference #2 between NWP and AC modeling

• many variables, many reactions

Polar Stratospheric Cloud (PSC)

Chemical species included in the JMA/MRI ozone chemistry model

Long-lived species							
01N ₂ O		02CH4	03H ₂ O				
04NO,		05HNO3	06N ₂ O ₅				
07Cl		08O _x	09CO				
10OC10		11CO ₂	12Passive tracer				
13HC1		14CIONO ₂	15HOC1				
16Cl ₂		17H ₂ O ₂	18CINO ₂				
19HBr		20BrONO ₂	21NO _x				
22HO ₂ NO ₂		23ClO _x	24BrO _x				
25Cl ₂ O ₂		26HOBr	27CCl4 (CFC-10)				
28CFCl3 (CFC-11)		29CF ₂ Cl ₂ (CFC-12)	30Br _v				
31CH ₃ Cl		32CH ₃ Br	33CF ₂ ClBr (Halon-1211)				
34CF ₃ Br (Halon-130	01)	<u>35</u> COF ₂	<u>36</u> HF				
<u>37</u> CH ₂ O		<u>38</u> CH ₃ OOH	<u>39</u> C ₂ H ₆				
<u>40</u> CH ₃ CHO		<u>41</u> C ₂ H ₃ OOH	<u>42</u> PAN (CH₃C(O)OONO₂)				
<u>43</u> CH ₃ C(O)OOH		<u>44</u> C ₃ H ₈	45ACET (CH ₃ C(O)CH ₃)				
<u>46</u> C ₃ H ₇ OOH		47HACET (CH ₃ C(O)CH ₂ OH)	48MGLY (CH3C(O)CHO)				
<u>49</u> C ₂ H ₄		50GLY ALD (HOCH ₂ CHO)	51GPAN (HOCH ₂ C(O)OONO ₂)				
52GC(0)OOH (HOCH ₂ C(0)OOH)		<u>53</u> C ₃ H ₆	54ONIT (CH ₃ C(O)CH ₂ ONO ₂)				
55POOH (HOC ₃ H ₆ OOH)		<u>56</u> C ₄ H ₁₀ ^a	$57C_5H_8$ (isoprene)				
<u>58</u> MACR ^b		<u>59</u> ISON ^c	<u>60</u> ISOPOOH ^d				
<u>61</u> NALD°		<u>62</u> MACROOH ^f	<u>63</u> MPAN ^g				
<u>64</u> C ₁₀ H ₁₆ (terpenes)							
Short-lived species							
01O(¹ D)	02OH	03C1	04O(³ P)				
05O ₃	06HO ₂	07NO ₂	08NO				
09Br	10N	11CIO	12BrO				
13NO ₃	14BrC1	15H	<u>16</u> CH ₃ O ₂				
$17C_{2}H_{5}O_{2}$	18CH ₃ C(O)O ₂	<u>19</u> C ₃ H ₇ O ₂	20ACETO2 (CH3C(O)CH2O2)				
<u>21</u> EO ₂ (HOC ₂ H ₄ O ₂) <u>22</u> EO (HOC ₂ H ₄		$\underline{23}GC(O)O_2 (HOCH_2C(O)O_2)$	<u>24</u> PO ₂ (HOC ₃ H ₆ O ₂)				
<u>25</u> ISOPO ₂ ^a	<u>26</u> MACRO ₂ ^b						

Table 1. Names of chemical species

Chemical reactions calculated in the JMA/MRI ozone chemistry model

Table 2. Gas Phase Reactions

Table 2. (continued)

			21-	
No. Reactions	No.	Reactions	No.	Keachons
Oxygen reactions	a_{23c} H + HO ₂	\rightarrow H ₂ O + O	- C ₃ H ₈ oxidation -	
$hk_1 O + O + M \rightarrow O_2 + M$	a_{24} H ₂ + O	\rightarrow OH + H	$\underline{c_{27}}$ $C_3H_8 + OH$	$\rightarrow C_3H_7O_2 + H_2O$
$hk_2 O + O_2 + M \rightarrow O_3 + M$	a_{26} HO ₂ + NO	$\rightarrow NO_2 + OH$	$\underline{c_{28}}$ $C_3H_7O_2 + NO$	$\rightarrow 0.24C_2H_5O_2 + 0.09CH_3CHO + 0.18CO + 0.7ACET + 0.6CO_2 + NO_2 + HO_2$
$hk_3 O + O_3 \rightarrow 2O_2$	a_{27} HO ₂ + HO ₂	\rightarrow H ₂ O ₂ + O ₂	$\underline{c_{29}}$ $C_3H_7O_2 + HO_2$	$\rightarrow C_3H_7OOH + O_2$
$hk_4 O^{1D} + N_2 \rightarrow O + N_2$	a_{30} OH + H ₂ O ₂	\rightarrow H ₂ O + HO ₂	$\underline{c_{30}}$ $C_3H_7O_2 + CH_3O_2$	$\rightarrow 0.8C_{2}H_{3}O_{2} + 0.3CH_{3}CHO + 0.2ACET + 0.6CO + 0.6CO_{2} + HO_{2}$
hk, $O^{1D} + O_2 \rightarrow O + O_2$	a_{16} OH + CO	$\rightarrow CO_2 + HO_2$	c_{31} $C_3H_7OOH + OH$	$\rightarrow 0.667ACET + 0.157C_3H_7O_2 + 0.053CH_3CHO + 0.142C_2H_5O_2 + 0.106CO + 0.035CO_2$
		2 2	—	+ 0.843OH + 0.157H ₂ O
Odd hydrogen reactions	Odd nitrogen reactio	ns	\underline{c}_{32} ACET + OH	$\rightarrow ACETO_2 + H_2O$
$a_1 H + O_2 + M \rightarrow HO_2 + M$	$b_3 NO_2 + O$	\rightarrow NO + O ₂	c_{33} ACETO ₂ + NO	\rightarrow CH ₃ C(O)O ₂ + CH ₂ O + NO ₂
$a_{1et} O^{ID} + H_2 O \rightarrow 2OH$	$b_4 = NO + O_3$	$\rightarrow NO_2 + O_2$	$\overline{c_{34}}$ ACETO ₂ + HO ₂	\rightarrow HACET + O ₂
$a_2 H + O_3 \rightarrow OH + O_2$	$b_6 N + NO$	$\rightarrow N_2 + O$	$\overline{c_{35}}$ ACETO ₂ + CH ₃ O ₂	\rightarrow 0.2HACET + 0.5MGLY + 0.3CH ₃ C(O)O ₂ + 0.8CH ₂ O + 0.3HO ₂ + O ₂ (+ 0.5CH ₃ OH)
$a_{2et} O^{1D} + CH_4 \rightarrow 0.75CH_3O_2 + 0.2$	$b_7 N + O_2$	\rightarrow NO + O	C ₃₆ MGLY + OH	\rightarrow CH ₃ C(0)0, + CO
+ 0.75OH + 0.4	$HO_2 + 0.05H_2$ b ₉ $NO_2 + O_3$	$\rightarrow NO_3 + O_2$	\vec{c}_{37} MGLY + NO ₃	\rightarrow CH ₃ C(O)O ₂ + CO + HNO ₃
$a_{3et} O^{1D} + H_2 \rightarrow OH + H$	b_{12} NO ₂ + NO ₃ +	$M \rightarrow N_2O_5 + M$	c_{10} HACET + OH	$\rightarrow 0.323 \text{ACETO}_{2} + 0.677 \text{MGLY} + 0.677 \text{OH}$
$a_5 OH + O \rightarrow H + O_2$	b_{22} NO ₂ + OH + 1	$M \rightarrow HNO_3 + M$	c_{21} C ₂ H7O ₂ + C ₂ H7O ₂	$\rightarrow 2.4$ CH,CHO + 1.2HO, + O, (+ 0.4C,H,OH)
$a_6 OH + O_3 \rightarrow HO_2 + O_2$	b_{23} NO ₂ + HO ₂ +	$M \rightarrow HO_2NO_2 + M$	ca, ACETO, + ACETO,	$\rightarrow 0.37$ MGLY + 1.26CH ₂ C(O)O ₂ + 1.26CH ₂ O + O ₂ (+ CH ₂ C(O)CH ₂ OH)
a_{6b} HO ₂ + O ₃ \rightarrow OH + 2O ₂	b_{24} HO ₂ NO ₂ + M	$\rightarrow HO_2 + NO_2 + M$	<u>-74</u>	
$a_7 HO_2 + O \rightarrow OH + O_2$	b_{27} HNO ₃ + OH	\rightarrow H ₂ O + NO ₃	$-C_2H_4$ oxidation -	
$a_8 OH + OH \rightarrow H_2O + O$	b_{28} HO ₂ NO ₂ + OI	$H \rightarrow H_2O + NO_2 + O_2$	$\underline{c_{39}}$ $C_2H_4 + OH + M$	$\rightarrow 0.75EO_2 + 0.5CH_2O + 0.25HO_2 + M$
$\vec{a_0}$ OH + OH + M \rightarrow H ₂ O ₂ + M	b_{32} N ₂ O ₅ + M	$\rightarrow NO_2 + NO_3 + M$	$\underline{c}_{40} = EO_2 + NO$	$\rightarrow EO + NO_2$
a_{10} H ₂ O ₂ + O \rightarrow OH + HO ₂	b_{28} $N_2O + O^{1D}$	$\rightarrow N_2 + O_2$	$\underline{c_{41}} = EO + O_2$	\rightarrow GLY ALD + HO ₂
a_{12} OH + HO ₂ \rightarrow H ₂ O + O ₂	b_{20} $N_2O + O^{1D}$	$\rightarrow 2NO$	<u>c₄₂ EO</u>	$\rightarrow 2CH_2O + HO_2$
a_{10} OH + H ₂ \rightarrow H ₂ O + H	b_{c_1} NO ₂ + NO	$\rightarrow 2NO_{2}$	$\underline{c_{43}}$ $C_2H_4 + O_3$	$\rightarrow CH_2O + 0.5CO + 0.12HO_2 + 0.12OH$
a_{10} H + HO, \rightarrow 20H	$h_{\rm H}$ NO + HO	$\rightarrow OH + NO_{2} + O_{2}$	$\underline{c_{44}}$ GLY ALD + OH	$\rightarrow 0.8 \text{GC}(0) \text{O}_2 + 0.4 \text{CO} + 0.2 \text{HO}_2 + 0.2 \text{H}_2$
$a_{23a} H + HO_2 \rightarrow H_a + O_a$	h_{c} $N_{s}O_{c} + H_{s}O_{c}$	$\rightarrow 2HNO_{2}$	$\underline{c_{45}}$ GC(O)O ₂ + NO ₂ + M	\rightarrow GPAN + M
u ₂₃₆ 11 × 110 ₂ 2 = 0 ₂	033 1.203 1.20	2111103	$\underline{c_{46}}$ GPAN + M	\rightarrow GC(O)O ₂ + NO ₂ + M
The underlined gas phase reactions are newly inclu-	ided into MRI-CCM2, but not treated in MRI-CCM	11 (Shibata et al., 2005).	$\underline{c_{47}}$ GC(O)O ₂ + NO	\rightarrow CH ₂ O + CO ₂ + HO ₂ + NO ₂
			$\underline{c_{48}}$ GC(O)O ₂ + HO ₂	$\rightarrow 0.7 \text{GC}(0) \text{O}_2 \text{H} + 0.3 \text{O}_3 (+ 0.3 \text{CH}_3 \text{COOH})$
No.	Reactions		$\underline{c_{49}}$ GC(O)O ₂ + CH ₃ O ₂	$\rightarrow 2CH_2O + CO_2 + 2HO_2$
Cathon reactions			\underline{c}_{50} GC(O)O ₂ + CH ₃ O ₂	\rightarrow CH ₂ O (+ CH ₃ COOH)
CH exidation			c_{51} GC(0)O ₂ + GC(0)O ₂	$\rightarrow 2CH_2O + 2CO_2 + 2HO_2$
	140		\underline{c}_{52} GC(O)O ₂ H + OH	$\rightarrow 0.5 \text{GC}(0) \text{O}_2 + 0.5 \text{CH}_2 \text{O} + 0.5 \text{CO}_2 + 0.5 \text{OH}$
$c_2 \subset H_4 + OH \longrightarrow CH_3O$	$_2 + H_2O$		$\overline{c_{70}}$ EO ₂ + EO ₂	\rightarrow EO + 0.5GLY ALD + O ₂ (+ 0.5HOC ₂ H ₄ OH)
$\underline{c_3} CH_3O_2 + NO \qquad \rightarrow CH_2O$	$+ NO_2 + NO_2$		C H6 ovidation	
$\underbrace{c_4}_{-} CH_3O_2 + CH_3O_2 \longrightarrow CHO$	$J + 2\Pi O_2 + O_2$		C H + OH + M	$\rightarrow PO + M$
$\underline{c_1} CH_3O_2 + CH_3O_2 \qquad \rightarrow CH_2O$	$+ O_2 (+CH_3OH)$		$C_{33} = C_{316} + O_{11} + M$	$\rightarrow 10_2 \pm M$ $\rightarrow 0.08CH \pm 0.5CH CHO \pm 0.31CH O \pm 0.54CH O \pm 0.56CO \pm 0.10HO \pm 0.33OH$
$\underline{c_6} CH_3O_2 + HO_2 \qquad \rightarrow CH_3O_2$			$\underline{c_{54}}$ $\overline{c_{3116}}$ $\overline{c_{3}}$	(103CH COOH)
$\underline{c_1}$ CH ₃ OOH + OH $\rightarrow 0.7$ CH	$H_3O_2 + 0.3CH_2O + 0.3OH + H_2O$		CH INO	$(+0.25Ch_3COOH)$
$\underline{c_8} CH_2O + OH \qquad \rightarrow CO +$	$HO_2 + H_2O$		$\underline{C_{55}}$ $\underline{C_3H_6} + NO_3$	$\rightarrow \text{ONI}$
$\underline{c_9} CH_2O + NO_3 \rightarrow CO +$	$HO_2 + HNO_3$		$\frac{c_{56}}{c_{56}}$ PO ₂ + NO	$\rightarrow Cn_3CnO + Cn_2O + nO_2 + NO_2$
- C ₂ H ₆ oxidation and Acetaldehyde degrad	ation—		$\underline{c_{57}}$ $PO_2 + HO_2$	\rightarrow POOR + 0 ₂
c_{10} $C_2H_6 + OH \rightarrow C_2H_5O$	$D_2 + H_2O$		$\underline{c_{58}}$ POOH + OH	$\rightarrow 0.5PO_2 + 0.5HACE1 + 0.5OH + H_2O$
c_{11} $C_2H_2O_2 + NO \rightarrow CH_3C$	$HO + NO_2 + HO_2$		$\underline{c_{60}}$ ONII + OH	\rightarrow MGLY + NO ₂
$\overline{c_{12}}$ $C_{2}H_{2}O_{2} + HO_{2} \rightarrow C_{2}H_{2}O_{2}$	$OOH + O_2$		$\underline{c_{61}} = \underline{EO_2 + HO_2}$	$\rightarrow 0.00/POOH + O_2$
c_{12} $C_2H_2O_2 + CH_2O_2 \rightarrow 0.8CH$	$J_{2}CHO + 1.4CO_{2} + 0.6HO_{2}$		$\underline{\mathbf{c}}_{72} \mathbf{PO}_2 + \mathbf{PO}_2$	\rightarrow 0.75GLY ALD + CH ₃ CHO + CH ₂ O + HO ₂ (+ 0.5HOC ₃ H ₆ OH)
c_{11} $C_{0}H_{1}O_{0} + C_{0}H_{1}O_{0} \rightarrow 1.6CH$	$L_{CHO} + 12HO_{2} (+04C_{2}H_{2}OH)$		— C₄H10 oxidation —	
c_{14} $C_{2}H_{2}OOH + OH \rightarrow 0.2860$	$C_{2}H_{2}O_{3} + 0.714CH_{3}CHO + 0.714OH + H_{2}O$		$c_{62} C_4 H_{10} + OH$	$\rightarrow 0.468ISOPO_2 + 0.02C_3H_7O_2 + 0.3C_2H_5O_2 + CH_2O + HO_2 + H_2O$
$\frac{C_{13}}{C_{12}} \xrightarrow{C_{13}} CH_{13}$	$(0)0 + H_0$		Isopropa avidation	
$CHCHO + NO \rightarrow CHC$	$(0)0_2 + H_20$			5 0 55MACP + 0 1MACPO + 0 58CH O + 0 1CH C(O)O + 0.08CH O + 0.14CO
$CHC(0)O + NO \rightarrow CHO$	+CO + NO		$\underline{\mathbf{l}}_1 = \mathbf{C}_5 \mathbf{H}_8 + \mathbf{O}_3$	$\rightarrow 0.05$ MACK + 0.1 MACKO ₂ + 0.36CH ₂ O + 0.1CH ₃ C(O)O ₂ + 0.06CH ₃ O ₂ + 0.14CO
$\frac{c_{18}}{c_{18}} \xrightarrow{\text{CH}} C(0)O_2 + NO \xrightarrow{\text{H}} M \xrightarrow{\text{CH}} PAN_4$	$_2 + CO_2 + INO_2$			$+0.09H_2O_2 + 0.25HO_2 + 0.25OH (+0.28HCOOH)$
$ \begin{array}{c} \underline{} \\ \underline{} $	(0)0 + N0 + M		$\underline{1}_{2}$ $\underline{0}_{3}\mathbf{n}_{8} + 0\mathbf{H}$	
$ \begin{array}{c} \underline{} \\ \underline{} $	$(0)OOH \pm O$		1_3 $C_3H_8 + NO_3$	\rightarrow ISUN $\sim 0.050 \text{ (A CD} + 0.0500 \text{ (C)} + 0.0500 \text{ (C)}$
$ \underbrace{CH}_{21} CH_{3}C(0)O_{2} + HO_{2} \rightarrow CH_{3}C$			1_4 ISOPO ₂ + NO	→ $0.044150N + 0.950MACK + 0.950CH_2O + 0.950HO_2 + 0.950NO_2$
$\underbrace{U_{22}}_{C13} \subset U_{13} \subset (U_{10}) \cup_2 + H \cup_2 \longrightarrow U_3 (+ U_{10}) \cup_2 \longrightarrow U_3$			$\underline{1_5}$ ISOPO ₂ + HO ₂	
$\underbrace{C_{23}}_{C_{13}} C_{13}C(0)OOH + OH \rightarrow CH_3C$	$(U)U_2 + \Pi_2 U$		1_{6} ISOPO ₂ + ISOPO ₂	\rightarrow 2MACR + CH ₂ O + CO ₂ + HO ₂
$\underline{c_{24}} CH_3C(0)O_2 + CH_3O_2 \rightarrow CH_3O$	$_{2} + CH_{2}O + CO_{2} + HO_{2} + O_{2}$		17 ISOPOOH + OH	\rightarrow MACK + CO ₂ + OH
$\underline{c_{25}} CH_3C(0)O_2 + CH_3O_2 \rightarrow CH_2O$	$+ O_2 (+ CH_3COOH)$		1_8 ISON + OH	\rightarrow NALD + 0.2MGLY + 0.1CH ₃ C(O)O ₂ + 0.1CH ₂ O + 2.1CO ₂ + 0.1HO ₂
$\underline{c_{26}} CH_3C(O)O_2 + CH_3C(O)O_2 \rightarrow 2CH_3O_2$	$O_2 + 2CO_2 + O_2$		19 MACR + OH	\rightarrow MACRO ₂
\underline{c}_{73} PAN + OH \rightarrow CH ₂ O	$+ CO_2 + NO_3$		$\underline{i_{10}}$ MACR + O ₃	$\rightarrow 0.9 \text{MGLY} + 0.1 \text{CH}_3 \text{C}(\text{O})\text{O}_2 + 0.22 \text{CO} + 0.43 \text{CO}_2 + 0.32 \text{HO}_2 + 0.19 \text{OH} (+0.45 \text{HCOOH})$

Chemical reactions calculated in the JMA/MRI ozone chemistry model

				Table 3	Photoc	hemical Reactions	
Table 2	. (continued)	No.		Reactions	No.		Reactions
$\label{eq:constraint} \begin{array}{ c c c c c c c c } \hline No. & & & & & & & & & & & & & & & & & & &$	Reactions N Reactions 1 MACR + NO $\rightarrow 0.5MGLY + 0.25HACET + 0.25CH_3C(0)O_2 + 0.75CH_2O + 0.25CO_2 + 0.75HO_2 + 0.19OH + NO_2 2 MACRO_2 + HO_2 \rightarrow MACROOH 2 MACRO_2 + MO_2 + M \rightarrow MACROO_2 + MGLY + 0.5CH_2O + 0.5CO + 0.5CO_2 4 MACRO_2 + NO_2 + M \rightarrow MACRO_2 + NO_2 + M 5 MPAN + M \rightarrow MACRO_2 + NO_2 + M 6 MPAN + OH \rightarrow 0.2MGLY + 0.1CH_3C(O)O_2 + 0.1CH_2O + 3.1CO_2 + 0.1HO_2 + NO_2 7 MACROOH + OH \rightarrow 0.2MGLY + 0.1CH_3C(O)O_2 + 0.1CH_2O + 3.1CO_2 + 0.1HO_2 + NO_2 7 MACROOH + OH \rightarrow 0.2MGLY + 0.1CH_3C(O)O_2 + 0.1CH_2O + 3.1CO_2 + 0.1HO_2 + NO_2 7 MACROOH + OH \rightarrow 0.2MGLY + 0.2MGCRO_2 + 0.2CH_3C(O)O_2 + 0.1HO_2 + NO_2 8 NALD + OH \rightarrow CH_2O + CO + NO_2 Terpenes oxidation — C10H16 + O3 \rightarrow 1.3ISOPO_2 + 0.6ACET + 1.7CO_2 C10H16 + O3 \rightarrow 1.3MACR + 0.2MACRO_2 + 0.2CH_3C(O)O_2 + 0.16CH_3O_2 + 0.18H_2O_2 + 1.16CH_2O_2 + 0.5OH + 0.28CO + 0.5HO_2 + 1.44CO_2 (+ 0.56HCOOH) 1 C10H16 + NO_3 \rightarrow 1.2ISOPO_2 + 4CO_2 + NO_2 $		NO.Reactions01 $O_2 + h\nu \rightarrow 2O$ $02^{*\circ}$ $O_3 + h\nu \rightarrow O + O_2$ 03 $H_2O + h\nu \rightarrow H + OH$ 04* $N_2O + h\nu \rightarrow N_2 + O^{1D}$ 05 $CH_4 + h\nu \rightarrow CH_3O_2 + HO_2$ 06*° $NO_2 + h\nu \rightarrow NO + O$ 07*HNO_3 + h\nu \rightarrow NO_2 + OH08HOC1 + h\nu \rightarrow C1 + OH09HO_2NO_2 + h\nu \rightarrow HO_2 + NO_210*CIONO_2 + h\nu \rightarrow C1 + NO_311* $N_2O_3 + h\nu \rightarrow OD^3 + NO_2$ 12* $O_3 + h\nu \rightarrow OD^3 + NO_2$ 13* $H_2O_2 + h\nu \rightarrow 2OH$ 14OCIO + h\nu \rightarrow O + CIO15 $CI_2O_2 + h\nu \rightarrow 2CI + O_2$ 16HCI + h\nu \rightarrow H + CI		$31^* \\ 32^* \\ 33^* \\ 34 \\ 35 \\ 36 \\ 37^* \\ 38^* \\ 39^* \\ 40^* \\ 41 \\ 42 \\ 43 \\ 44 \\ 45 \\ 46^* $	$\begin{array}{c} \mbox{Keaturus} \\ \hline \mbox{CF}_{3}CHBr + h\nu & \rightarrow Br + Cl + COF_{2} (+ products) \\ CF_{3}Br + h\nu & \rightarrow Br + COF_{2} + HF (+ products) \\ CIONO_{2} + h\nu & \rightarrow CIO + NO_{2} \\ BrONO_{2} + h\nu & \rightarrow BrO + NO_{2} \\ COF_{2} + h\nu & \rightarrow 2HF (+ products) \\ CH_{2}OH + h\nu & \rightarrow CH_{2}O + HO_{2} + OH \\ CH_{2}O + h\nu & \rightarrow CO + 2HO_{2} \\ CH_{2}O + h\nu & \rightarrow CO + H_{2} \\ PAN + h\nu & \rightarrow CH_{3}CHO_{2} + CO_{2} + NO_{3} \\ C_{2}H_{3}OOH + h\nu & \rightarrow CH_{3}CHO + OH + HO_{2} \\ CH_{3}COH + h\nu & \rightarrow CH_{3}O_{2} + CO_{2} + NO_{3} \\ C_{2}H_{3}OOH + h\nu & \rightarrow CH_{3}O_{2} + CO_{2} + OH \\ CH_{3}COH + h\nu & \rightarrow CH_{3}O_{2} + CO_{2} + OH \\ CH_{3}CHO + h\nu & \rightarrow CH_{3}O_{2} + CO_{2} + OH \\ CH_{3}CHO + h\nu & \rightarrow CH_{3}O_{2} + CO_{2} + OH \\ CH_{3}CHO + h\nu & \rightarrow CH_{3}O_{2} + CO_{2} + OH \\ CH_{3}CHO + h\nu & \rightarrow CH_{3}O_{2} + CO_{2} + OH \\ CH_{3}CHO + h\nu & \rightarrow 0.7ACET + 0.24C_{2}H_{3}O_{2} + 0.09CH_{3}CHO \\ & + 0.18CO + OH + HO_{2} \\ CHT + h\nu & \qquad CH_{3}CO + OH \\ \end{array}$	
No. Reactions	No. Reactions $d_{12} = O(10 \pm 0)$	18 19	$CO_2 + hv$ $CINO_2 + hv$		<u>47</u> * <u>48</u>	ACET + hv HACET + hv	$ \rightarrow 2CH_3O_2 + CO \rightarrow CH_3C(O)O_2 + CH_2O + HO_2 $
$\begin{array}{c} \text{Chorme reactions} \\ \text{d}_0 \text{CH}_3\text{Cl} + \text{OH} \rightarrow \text{Cl} + \text{H}_2\text{O} (+ \text{products}) \\ \text{d}_2 \text{Cl} + \text{O}_3 \rightarrow \text{Cl} \text{O} + \text{O}_2 \\ \text{d}_3 \text{Cl} \text{O} + \text{O} \rightarrow \text{Cl} + \text{O}_2 \\ \text{d}_4 \text{Cl} \text{O} + \text{NO} \rightarrow \text{Cl} + \text{NO}_2 \\ \text{d}_5 \text{Cl} + \text{CH}_4 \rightarrow \text{HCl} + \text{CH}_3\text{O}_2 \\ \text{d}_6 \text{Cl} + \text{H}_2 \rightarrow \text{HCl} + \text{Cl} \\ \text{d}_7 \text{Cl} + \text{HO}_2 \rightarrow \text{HCl} + \text{O}_2 \\ \text{d}_6 \text{Cl} \text{O} + \text{OH} \rightarrow \text{Cl} + \text{HO}_2 \\ \text{d}_6 \text{Cl} + \text{OH} \rightarrow \text{Cl} + \text{HO}_2 \\ \text{d}_6 \text{Cl} \text{O} + \text{OH} \rightarrow \text{Cl} + \text{HO}_2 \\ \text{d}_{11} \text{HCl} + \text{OH} \rightarrow \text{Cl} + \text{H}_2\text{O} \\ \text{d}_{11} \text{ICl} - \text{NO}_2 + \text{M} \rightarrow \text{Cl} \text{ONO}_2 + \text{M} \\ \text{d}_7 \text{Cl} \text{OHO}_2 + \text{OH} \rightarrow \text{Cl} \text{OHO}_2 + \text{OH} \\ \text{d}_{11} \text{Cl} \text{OHO}_2 + \text{OH} \rightarrow \text{Cl} \text{OHO}_2 + \text{M} \\ \text{d}_7 \text{Cl} \text{OHO}_2 + \text{OH} \rightarrow \text{Cl} \text{OHO}_2 + \text{M} \\ \text{d}_7 \text{Cl} \text{OHO}_2 + \text{OH} \rightarrow \text{Cl} \text{OHO}_2 + \text{M} \\ \text{d}_8 \text{Cl} \text{OHO}_2 + \text{OH} \rightarrow \text{Cl} \text{OHO}_2 + \text{M} \\ \text{d}_8 \text{Cl} \text{OHO}_2 + \text{OH} \rightarrow \text{Cl} \text{OHO}_2 + \text{M} \\ \text{d}_8 \text{Cl} \text{OHO}_2 + \text{M} \rightarrow \text{Cl} \text{OHO}_2 + \text{M} \\ \text{d}_8 \text{Cl} \text{OHO}_2 + \text{OH} \rightarrow \text{Cl} \text{OHO}_2 + \text{M} \\ \text{d}_8 \text{Cl} \text{OHO}_2 + \text{OH} \rightarrow \text{Cl} \text{OHO}_2 + \text{M} \\ \text{d}_8 \text{Cl} \text{OHO}_2 + \text{M} \rightarrow \text{Cl} \text{OHO}_2 + \text{M} \\ \text{d}_8 \text{Cl} \text{OHO}_2 + \text{M} \\ \text{d}_8 \text{Cl} \text{OHO}_2 + \text{M} \rightarrow \text{Cl} \text{OHO}_2 + \text{M} \\ \text{d}_8 \text{d}_8 \text{Cl} \text{OHO}_2 + \text{M} \\ \text{d}_8 \text{d}_8 \text{Cl} \text{OHO}_2 + \text{M} \\ \text{d}_8 \text{Cl} \text{OHO}_2 + \text{M} \\ \text{d}_8 \text{d}_8 \text{Cl} \text{OHO}_2 + \text{M} \\ \text{d}_8 \text{Cl} \text{OHO}_2 + \text{M} \\ \text{d}_8 \text$	$\begin{array}{rcl} \mathbf{d}_{44} & \mathrm{OCIO} + \mathrm{O} & \rightarrow \mathrm{CIO} + \mathrm{O}_2 \\ \mathbf{d}_{53} & \mathrm{OCIO} + \mathrm{NO} & \rightarrow \mathrm{CIO} + \mathrm{NO}_2 \\ \mathbf{d}_{101} & \mathrm{CCI}_4 + \mathrm{O}^{1D} & \rightarrow \mathrm{4CI} (+ \mathrm{products}) \\ \mathbf{d}_{102} & \mathrm{CFCI}_3 + \mathrm{O}^{1D} & \rightarrow \mathrm{3CI} + \mathrm{HF} (+ \mathrm{products}) \\ \mathbf{d}_{103} & \mathrm{CF}_2\mathrm{CI}_2 + \mathrm{O}^{1D} & \rightarrow \mathrm{2CI} + \mathrm{COF}_2 (+ \mathrm{products}) \\ \underline{\mathbf{d}_{100}} & \mathrm{COF}_2 + \mathrm{O}^{1D} & \rightarrow \mathrm{2HF} (+ \mathrm{products}) \\ \hline \end{array}$ $\begin{array}{c} \mathbf{Bromine\ reactions} \\ \mathbf{e}_2 & \mathrm{Br} + \mathrm{O}_3 & \rightarrow \mathrm{BrO} + \mathrm{O}_2 \\ \mathbf{e}_3 & \mathrm{BrO} + \mathrm{O} & \rightarrow \mathrm{Br} + \mathrm{O}_2 \\ \mathbf{e}_4 & \mathrm{BrO} + \mathrm{NO} & \rightarrow \mathrm{NO}_2 + \mathrm{Br} \\ \mathbf{e}_{3a} & \mathrm{BrO} + \mathrm{CIO} & \rightarrow \mathrm{OCIO} + \mathrm{Br} \\ \mathbf{e}_{3b} & \mathrm{BrO} + \mathrm{CIO} & \rightarrow \mathrm{Br} + \mathrm{CI} + \mathrm{O}_2 \end{array}$	20 21 22 23 24° 25° 26* 27* 28* 29* 30*	$\begin{array}{l} BrONO_2 + h\nu \\ BrCl + h\nu \\ HOBr + h\nu \\ NO_3 + h\nu \\ NO_3 + h\nu \\ CCl_4 + h\nu \\ CFcl_5 + h\nu \\ CF_2Cl_2 + h\nu \\ CH_3Cl + h\nu \\ CH_3Br + h\nu \end{array}$	$\begin{array}{l} \rightarrow & Br + NO_3 \\ \rightarrow & Br + C1 \\ \rightarrow & Br + OH \\ \rightarrow & NO_2 + O \\ \rightarrow & NO_2 + O \\ \rightarrow & NO_2 + O \\ \rightarrow & AC1 (+ products) \\ \rightarrow & 3C1 + HF (+ products) \\ \rightarrow & 2C1 + COF_2 (+ products) \\ \rightarrow & C1 (+ products) \\ \rightarrow & Br (+ products) \end{array}$	49° 50 51 52 53 54 55* 56 57* 58 59	$\begin{array}{l} MGLY + h\nu \\ GLY ALD + h\nu \\ GLY ALD + h\nu \\ GC(0)OOH + h\nu \\ ISOPOOH + h\nu \\ ISOPOOH + h\nu \\ ISON + h\nu \\ MACR + h\nu \\ MPAN + h\nu \\ MACROOH + h\nu \\ NALD + h\nu \end{array}$	$\begin{array}{l} \rightarrow \mathrm{CH_3C(O)O_2+CO+HO_2} \\ \rightarrow \mathrm{CH_3O+CO+2HO_2} \\ \rightarrow \mathrm{CO}~(+\mathrm{CH_3OH}) \\ \rightarrow \mathrm{CH_2O+CO_2+OH+HO_2} \\ \rightarrow \mathrm{CH_3O+CO_2+OH+HO_2} \\ \rightarrow \mathrm{CH_3CHO+CH_2O+OH+HO_2} \\ \rightarrow \mathrm{MACR+CH_2O+OH+HO_2} \\ \rightarrow \mathrm{MACR+CH_2O+HO_2+NO_2} \\ \rightarrow \mathrm{CH_3C(O)O_2+CH_2O+CO+HO_2} \\ \rightarrow \mathrm{MACRO_2+NO_2} \\ \rightarrow \mathrm{0.5HACET+0.5MGLY+0.5CH_2O} \\ + \mathrm{0.5CO+OH+HO_2} \\ \rightarrow \mathrm{CH_3O+CO+HO_2+NO_2} \end{array}$
$\begin{array}{rcl} d_{32} & CIO(HQ_2 + O) & \rightarrow CIO(HO_3) \\ d_{33} & CIO + HO_2 & \rightarrow HOCI + O_2 \\ d_{34} & HOCI + OH & \rightarrow H_2O + CIO \\ d_{35} & HOCI + O & \rightarrow OH + CIO \\ d_{35} & GI + NO + M & \rightarrow CINO + M \end{array}$	$\begin{array}{rcl} e_{5c} & BrO + ClO & \longrightarrow BrCl + O_2 \\ e_6 & BrO + BrO & \longrightarrow 2Br + O_2 \\ e_7 & Br + HO_2 & \longrightarrow HBr + O_2 \\ e_8 & Br + OClO & \longrightarrow BrO + ClO \end{array}$		Table 4	4. Heterogeneous Reactions			
$\begin{array}{rcl} a_{36} & O(1+O_2) + M & \rightarrow O(1+O_2) + M \\ d_{37} & HOC(1+C) & \rightarrow O(1+Cl_2) \\ d_{60} & ClO + ClO + M & \rightarrow Cl_2O_2 + M \\ d_{61} & Cl_2O_2 + M & \rightarrow ClO + ClO + M \\ d_{62} & OClO + O(1) & \rightarrow HOC(1+O_2) \\ d_{63} & OClO + C1 & \rightarrow ClO + ClO \\ d_{64} & OClO + O & \rightarrow ClO + O_2 \end{array}$	$\begin{array}{rcl} e_{11} & HBr + OH & \rightarrow H_2O + Br \\ e_{13} & BrO + NO_2 + M & \rightarrow BrONO_2 + M \\ e_{15} & BrO + HO_2 & \rightarrow HOBr + O_2 \\ e_{91} & CF_3Br + O^{1D} & \rightarrow Br + COF_2 + HF \ (+ \ products) \\ e_{92} & CF_2CIBr + O^{1D} & \rightarrow Br + CI + COF_2 \ (+ \ products) \\ e_{93} & CH_3Br + O^{1D} & \rightarrow Br \ (+ \ products) \end{array}$	On s g g g g g	sulfate, sea salt 1 ClONO 2 $N_2O_3 +$ 3 BrONO 4 $HO_2 +$ (5 $EO_2 +$ (6 $PO_2 +$ (t, tropospheric cloud particles $b_2 + (H_2O)_1 \rightarrow HOC1 + HN$ $(H_2O)_1 \rightarrow 2HNO_3$ $b_2 + (H_2O)_1 \rightarrow HOBr + HN$ $(H_2O)_1 \rightarrow 0.5H_2O_2 + 0$ $H_2O_1 \rightarrow (2/3)POOH$ $H_2O_1 \rightarrow POOH$	O ₃ O ₃ .5O ₂		

g7

<u>g8</u> g9

g10

het1

het4

het5

het6

het2

 $NO_2 + (H_2O)_1$

 $N_2O_5 + (HCI)_s$ HOC1 + (HC1)_s

HOBr + (HC1)

het3 $N_2O_5 + (H_2O)_5$

On polar stratospheric cloud particles

 $\begin{array}{rcl} ISOPO_2 + (H_2O)_1 & \rightarrow & ISOPOOH \\ MACRO_2 + (H_2O)_1 & \rightarrow & MACROOH \end{array}$

 $CH_3COO_2 + (H_2O)_1 \rightarrow HO_2 (+ CH_3COOH)$

 $CIONO_2 + (H_2O)_s \rightarrow HOC1 + (HNO_3)_s$

 $CIONO_2 + (HC1)_s \rightarrow C1_2 + (HNO_3)_s$

 $\rightarrow 0.5NO_2 + 0.5HNO_3$

 $\begin{array}{rl} \rightarrow & (2\text{HNO}_3)_s \\ \rightarrow & \text{CINO}_2 + (\text{HNO}_3)_s \end{array}$

 \rightarrow Cl₂ + (H₂O),

 \rightarrow BrC1 + (H₂O),

Deushi and Shibata (2011) ¹⁷

Reactions on polar

stratospheric clouds (PSCs)

Consequently, atmospheric chemistry models are less-accurate or heavier...

00

What else?

Difference **#3** between NWP and AC modeling

• very few observations

20

All the ozone sonde stations from 1962 to 2017 collected by WOUDC/WMO

Dawn of atmospheric chemistry data assimilation

from the 1990s to the 2000s

Expansion of observations

• Example: conventional ozone observations

All the ozone sonde stations from 1962 to 2017 collected by WOUDC/WMO

Expansion of observations

Example: non-conventional ozone observations

Figure 6. Combined mode LAMAT ozone mixing ratio at 10 mbar for Jan. 2 in Southern Hemisphere with 1-2-1 latitude smoothing. Greenwich meridian is marked at 4° intervals from 0° to 84°S with dashed circles at 30°S and 60°S. Contour spacing is 0.5 ppmv.

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 97, NO. D2, PAGES 2569-2588, FEBRUARY 20, 1992

Toward the Four Dimensional Assimilation of Stratospheric Chemical Constituents

JOHN AUSTIN¹

Department of Atmospheric Sciences, University of Washington, Seattle

A model to assimilate stratospheric chemical constituents is proposed. The chemical transport model used is two dimensional on an isentropic surface and solves the photochemical equations using an extended family approach. Thirty-day integrations are performed at the three isentropic surfaces given by the potential temperature values 600 K, 850 K and 1400 K starting on January 1. 1979. During the integrations, Limb Infrared Monitor of the Stratosphere (LIMS) satellite data are assimilated into the model and the results are compared with independently mapped (map archive tape (MAT)) data. The assimilation results are found to be in good agreement with the independent analyses at all three levels. Preliminary assimilations revealed significant biases in modeled HNO₃ at 850 K and in O₃ at 1400 K. However, by changing the adjustable parameters of the assimilation model the HNO₃ bias was successfully eliminated. The O₃ bias was easily eliminated by the addition of an extra source term. The comparisons reveal possible minor weaknesses in the MAT analyses. First, the chemical constituents appear to be occasionally in error in the MAT data during rapidly changing dynamical events such as stratospheric warmings. Second, the temporal continuity is sometimes lacking in the MAT analyses, leading to rapidly changing concentrations which cannot be understood on the basis of conventionally understood photochemistry. On the other hand, the assimilation model used here does not produce very satisfactory analyses when the chemical data are very noisy. The differences between the assimilated and MAT analyses are quite small and are generally less than data errors. Although the assimilation model is here applied to LIMS data, the method is generally applicable to any data source and could be especially useful for analyzing the large volume of data from the Upper Atmosphere Research Satellite.

1992

Method: Nudging

Very early stage in the 1990s

After 10-year advancements in computer and model performance...

00

Progress in the 2000s

Atmos. Chem. Phys., 7, 5695–5710, 2007 www.atmos-chem-phys.net/7/5695/2007/ © Author(s) 2007. This work is licensed under a Creative Commons License.

Atmospheric Chemistry and Physics

Evaluating model performance of an ensemble-based chemical dataassimilation system during INTEX-B field missionMethod: EnKF

A. F. Arellano Jr.¹, K. Raeder², J. L. Anderson², P. G. Hess¹, L. K. Emmons¹, D. P. Edwards¹, G. G. Pfister¹, T. L. Campos¹, and G. W. Sachse³

¹Atmospheric Chemistry Division, Earth and Sun Systems Laboratory, National Center for Atmospheric Research, PO Box 3000, Boulder, Colorado 80307-3000, USA

²Institute for Mathematics Applied to Geosciences, Computational and Information Systems Laboratory, National Center for Atmospheric Research, PO Box 3000, Boulder, Colorado, 80307-3000, USA

³Chemistry and Dynamics Branch, NASA Langley Research Center, Hampton, Virginia, 23681-2199, USA

Received: 1 June 2007 – Published in Atmos. Chem. Phys. Discuss.: 5 July 2007 Revised: 30 October 2007 – Accepted: 31 October 2007 – Published: 16 November 2007

Abstract. We present a global chemical data assimilation system using a global atmosphere model, the Community Atmosphere Model (CAM3) with simplified chemistry and the Data Assimilation Research Testbed (DART) assimilation package. DART is a community software facility for assimilation studies using the ensemble Kalman filter approach. Here, we apply the assimilation system to constrain global tropospheric carbon monoxide (CO) by assimilating meteorological observations of temperature and horizontal wind velocity and satellite CO retrievals from the Measurement of Pollution in the Troposphere (MOPITT) satellite instrument.

1 Introduction The availability - global and long-term measurements of tropospheric chemic from snace offers an Very early work of the chemical opportunity t composition data assimilation using EnKF predictions fr tral to this into (NCAR DART package) that is reasona surements of various scales and of various chemical species. Such a system is useful as a tool in providing initial condi-

Progress in the 2000s

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114, D13205, doi:10.1029/2008JD011115, 2009

Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: 2. Data assimilation

A. Benedetti,¹ J.-J. Morcrette,¹ O. Boucher,² A. Dethof,¹ R. J. Engelen,¹ M. Fisher,¹
H. Flentje,³ N. Huneeus,⁴ L. Jones,¹ J. W. Kaiser,¹ S. Kinne,⁵ A. Mangold,⁶ M. Razinger,¹
A. J. Simmons,¹ and M. Suttie¹

Received 5 September 2008; revised 30 April 2009; accepted 6 May 2009; published 11 July 2009.

[1] This study presents the new aerosol assimilation system, developed at the European Centre for Medium-Range Weather Forecasts, for the Global and regional Earth-system Monitoring using Satellite and in-situ data (GEMS) project. The aerosol modeling and analysis system is fully integrated in the operational four-dimensional assimilation apparatus. Its purpose is to produce osol forecasts and reanalyses of aerosol fields using optical depth data from satellite sors. This paper is the second of a series which describes the GEMS aero implementation of the background error of the second fields, and presents a subset of

Their chemistry forecast model is based on the ECMWF operational NWP model.

milation system. It also provides a discussion of the s errors for the aerosol fields, and presents a subset of thich has been run for 2003 and 2004 using data from Spectroradiometer on the Aqua and Terra satellites. how that despite some compromises that have been rds to the choice of control variable and error killful in drawing to the observations and in improving

the forecasts of aerosol optical depth.

2009

Method: 4D-Var

LETKF for aerosol data assimilation

Atmos. Chem. Phys., 10, 39–49, 2010 www.atmos-chem-phys.net/10/39/2010/ © Author(s) 2010. This work is distributed under the Creative Commons Attribution 3.0 License.

2010

Data assimilation of CALIPSO aerosol observations

T. T. Sekiyama¹, T. Y. Tanaka¹, A. Shimizu², and T. Miyoshi^{3,*}

¹Meteorological Research Institute, Tsukuba, Japan

²National Institute for Environmental Studies, Tsukuba, Japan

³Japan Meteorological Agency, Tokyo, Japan

*now at: Department of Atmospheric and Oceanic Science, University of Maryland, College Park, Maryland, USA

Received: 17 December 2008 – Published in Atmos. Chem. Phys. Discuss.: 4 March 2009 Revised: 1 December 2009 – Accepted: 4 December 2009 – Published: 5 January 2010

Abstract. We have developed an advanced data assimilation system for a global aerosol model with a four-dimensional ensemble Kalman filter in which the Level 1B data from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) were successfully assimilated for the first time, to the best of the authors' knowledge. A onemonth data assimilation cycle experiment for dust, sulfate, and sea-salt aerosols was performed in May 2007. The results were validated via two independent observations: 1) the ground-based lidar network in East Asia, managed by the National Institute for Environmental Studies of Japan, and 2) weather reports of aeolian dust events in Japan. Detailed four-dimensional structures of aerosol outflows from source regions over oceans and continents for various particle types and sizes were well reproduced. The intensity of dust emission at each grid point was also corrected by this data assimilation system. These results are valuable for the comprehensive analysis of aerosol behavior as well as aerosol forecasting.

forecasts (cf. Kalnay, 2003). Additionally, some data assimilation analyses have been applied to atmospheric chemical species (e.g., stratospheric ozone by Geer et al., 2006; tropospheric carbon monoxide by Arellano et al., 2007, and references therein). Compared with the long history and

lid examination dan ilation n to aero Weather 1 regional Earth data (GEMS) pr tional (4D-Var) dat itor and forecast, a black-carbon aeros servations used in optical depth data Spectro-radiometer satellites. Zhang et similation system 1

The first paper on chemical data assimilation using satellite LIDAR observations.

Method: LETKF

One of the first works for atmospheric chemistry using LETKF.

observations, to improve Naval Research Laboratory (NRL)

LETKF for aerosol data assimilation

Status quo of atmospheric chemistry data assimilation

contribution to environment and health issues

LETKF for complicated ozone chemistry

Simultaneous assimilation of satellite NO₂, O₃, CO, and HNO₃ data for the analysis of tropospheric chemical composition and emissions

K. Miyazaki^{1,2}, H. J. Eskes¹, K. Sudo^{2,3}, M. Takigawa², M. van Weele¹, and K. F. Boersma^{1,4}

¹Royal Netherlands Meteorological Institute (KNMI), Wilhelminalaan 10, 3732 GK, De Bilt, The Netherlands
 ²Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
 ³Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan
 ⁴Eindhoven University of Technology, Fluid Dynamics Lab, Eindhoven, The Netherlands

Correspondence to: K. Miyazaki (miyazaki@knmi.nl)

Received: 22 May 2012 – Published in Atmos. Chem. Phys. Discuss.: Probably, this is the first paper on the Revised: 3 October 2012 – Accepted: 4 October 2012 – Published: 22 multiple chemical data assimilation to

relat

Abstract. We have developed an advanced chemical data assimilation system to combine observations of chemical compounds from multiple satellites. NO₂, O₃, CO, and HNO₃ measurements from the Ozone Monitoring Instrument (OMI), Tropospheric Emission Spectrometer (TES), Measurement of Pollution in the Troposphere (MOPITT),

demonstrate the correlation between

chemical constituents.

The simultaneous adjustment of the emissions and concentrations is a powerful approach to correcting the tropospheric ozone budget and profile analyses.

LETKF for complicated ozone chemistry

ment (OMI), Tropospheric Emission Spectrometer (TES), ozone bud Measurement of Pollution in the Troposphere (MOPITT),

LETKF for CO₂ flux estimation (OSSE)

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116, D09110, doi:10.1029/2010JD014673, 2011-

2011

Method: LETKF

"Variable localization" in an ensemble Kalman filter: Application to the carbon cycle data assimilation

Ji-Sun Kang,¹ Eugenia Kalnay,¹ Junjie Liu,² Inez Fung,² Takemasa Miyoshi,¹ and Kayo Ide¹

Received 28 June 2010; revised 17 February 2011; accepted 24 February 2011; published 12 May 2011.

[1] In ensemble Kalman filter, space localization is used to reduce the impact of long-distance sampling errors in the ensemble estimation of the forecast error covariance. When two variables are not physically correlated, their error covariance is still estimated by the ensemble and, therefore, it is dominated by sampling errors. We introduce a "variable localization" method, zeroing out such covariances between unrelated variables to the problem of assimilating carbon dioxide concentrations into a dynamical model using the local ensemble transform Kalman filter (LETKF) in an observing system simulation experiments (OSSE) framework. A system where meteorological and carbon variables are simultaneously assimilated is used to estimate surface carbon fluxes that are not directly observed. A range of covariance structures are explored for the LETKF, with emphasis on configurations allowing nonzero error covariance between carbon

variables and the wind field, which affects transport of atmor CO₂ and the other meteorological variables. Such variable 1 the background error covariance among prognostic varrelated, thus reducing sampling errors. Results from the ide that the performance in the estimation of surface carbon flu and meteorological observations localization is much better than that using a standard full relative improvement increases when the surface fluxes chan becomes significant.

Though this is OSSE, they assimilate both concentration using the variable localization.

Operational products of ECMWF

Operational products of ECMWF

Operational products of NOAA

Observation technology is developing day by day.

Himawari-8 aerosol product (since 2015)

• The latest geostationary RGB imager compatible with GOES-R's

HS-H08-20150427-0230-S21-FLDK.02750-02750.nc, Himawari-8 AHI standard map data, albedo-06

NC-H08-20150427-0600-R06OC-FLDK.02401-02401.nc, Himawari-8 AHI equal latitude-longitude map data, AOT-

Himawari-8 aerosol product in the near future

86

SOLA, 2016, Vol. 12, 86–90, doi:10.2151/sola.2016-020

Method: LETKF

Data Assimilation of Himawari-8 Aerosol Observations: Asian Dust Forecast in June 2015

Asian Dust Forecast in June 20

Geophysical Research Letters

RESEARCH LETTER

10.1002/2016GL069298

Key Points:

	 Next-generation geostationary
	meteorological satellite Himawari-8
	launched on 7 October 2014
Abstract	Himawari-8 provides full-disk aerosol
	optical properties at 10 min intervals
Himaw	from geostationary orbit
was launch	• Promising results of aerosol assimilation
July 2015.	experiment on Himawari-8 retrievals
performanc	
3 for near-	
minute obse	Supporting Information:
(AOT) fror	 Supporting Information S1
of Himawa	• Figure S1
forecast mo	• Figure S2
assimilation	• Figure S3
products de	• Text S1
(i.e., Mode	Movie S1
AOT) of an	
data assimi	Correspondence to:
of the Asia	K. Yumimoto,
MODIS AC	yumimoto@mri-jma.go.jp
has a much	,
satellites, v	
study is a fi	Citation:
aerosol rese	Yumimoto, K., et al. (2016), Aerosol data

Aerosol data assimilation using data from Himawari-8, a next-generation geostationary meteorological satellite

K. Yumimoto¹, T.M. Nagao², M. Kikuchi², T.T Sekiyama¹, H. Murakami², T.Y. Tanaka¹, A. Ogi³, H. Irie⁴, P. Khatri^{4,5}, H. Okumura⁶, K. Arai⁶, I. Morino⁷, O. Uchino^{1,7}, and T. Maki¹

¹Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan, ²Earth Observation Research Center, Japan Aerospace Exploration Agency, Tsukuba, Japan, ³Japan Meteorological Agency, Tokyo, Japan, ⁴Center for Environmental Remote Sensing (CERes), Chiba University, Chiba, Japan, ⁵Now at Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University, Sendai, Japan, ⁶Graduate School of Science and Engineering, Saga University, Saga, Japan, ⁷National Institute for Environmental Studies, Tsukuba, Japan

Abstract Himawari-8, a next-generation geostationary meteorological satellite, was launched on 7 October 2014 and became operational on 7 July 2015. The advanced imager on board Himawari-8 is equipped with 16 observational bands (including three visible and three near-infrared bands) that enable retrieval of full-disk aerosol optical properties at 10 min intervals from geostationary (GEO) orbit. Here we show the first application of aerosol optical properties (AOPs) derived from Himawari-8 data to aerosol data assimilation. Validation of the assimilation experiment by comparison with independent observations demonstrated successful modeling of continental pollution that was not predicted by simulation without assimilation and reduced overestimates of dust front concentrations. These promising results suggest that AOPs derived from Himawari-8/9 and other planned GEO satellites will considerably improve forecasts of air quality, inverse modeling of emissions, and aerosol reanalysis through assimilation techniques.

Future of atmospheric chemistry data assimilation

integration with NWP

Contribution to radiation (indirect interaction)

- O_3 , CO_2 , aerosols,...
 - Model temperature through the radiation data assimilation
 - Improvement of radiative budget
- Contribution to dynamics (direct interaction)
 - Constituents are tracers of advection
 - → Wind fields could be inversely estimated.
 - O₃ in the stratosphere
 - CO₂/CO/aerosols in the troposphere

 Theoretically possible (e.g., many successful OSSEs), but not well-known for the real situations.

Wind Field

Concentration Distribution

GEOPHYSICAL RESEARCH LETTERS, VOL. 37, L17801, doi:10.1029/2010GL044416, 2010

Constraints on black carbon aerosol distribution from Measurement of Pollution in the Troposphere (MOPITT) CO

Avelino F. Arellano Jr.,^{1,2} Peter G. Hess,³ D. P. Edwards,¹ and D. Baumgardner⁴

Received 18 June 2010; revised 12 July 2010; accepted 26 July 2010; published 1 September 2010.

[1] We present an approach to constrain simulated atmo- bon and the large uncertainty in its emissions hinders our spheric black carbon (BC) using carbon monoxide (CO) observations. The approach uses: (1) the Community Atmosphere Model with Chemistry to simulate the evolution of BC and CO within an ensemble of model simulations; (2) satellite CO retrievals from the MOPITT/Terra instrument to assimilate observed CO into these simulations; (3) the derived sensitivity of BC to CO within these simulations to correct the simulated BC distributions. We demonstrate the performance of this approach through model experiments with and without the BC corrections during the period coinciding with the Intercontinental Chemical Transport Experiment (INTEX-B). Our results show significant improvements (~50%) in median BC profiles using constraints from MOPITT, based on comparisons with INTEX-B measurements. We find that assimilating MOPITT CO provides considerable impact on simulated BC concentrations, especially over source regions. This approach offers an opportunity to augment our current ability to predict BC distributions.

dge of its importance to present radiative forcing. **k** tly, direct measurements of BC are limited [3] f surface stations and aircraft flights taken across a vific field campaigns. Indirect meafrom a nu in the form of retrievals of surements of aer They indicated Carbon Monoxide data gro rep assimilation had a positive impact for tio Black Carbon aerosol simulation, but det

Method: EnKF

sur did not investigate the full potential of aer chemical and dynamical interaction. pre a c * CO and BC have similar sources. 200

sion inventories [e.g., Bond et al., 2004]. The conventional approach maintains the model-derived relative aerosol fraction and vertical distributions in the assimilated distribu-

Atmos. Chem. Phys., 9, 4855–4867, 2009 www.atmos-chem-phys.net/9/4855/2009/ © Author(s) 2009. This work is distributed under the Creative Commons Attribution 3.0 License.

Method: 4D-Var

On the extraction of wind information from the assimilation of ozone profiles in Météo–France 4-D-Var operational NWP suite

N. Semane^{1,2}, V.-H. Peuch¹, S. Pradier¹, G. Desroziers¹, L. El Amraoui¹, P. Brousseau¹, S. Massart³, B. Chapnik¹, and A. Peuch⁴

1

¹CNRM-GAME, Météo-France and CNRS URA 1357, Toulouse, France
 ²CNRM, Direction de la Météorologie Nationale, Casablanca, Morocco
 ³CERFACS, Toulouse, France
 ⁴DP, Météo–France, Toulouse, France

Received: 24 June 2008 – Published in Atmos. Chem. Phys. Discuss.: 28 August 2008 Revised: 2 July 2009 – Accepted: 10 July 2009 – Published: 22 July 2009

Abstract. By applying four-dimensional variational dataassimilation (4-D-Var) to a combined ozone and dynamics Numerical Weather Prediction model (NWP), ozone observations generate wind increments through the ozonedynamics coupling. The dynamical impact of Aura/MLS satellite ozone profiles is investigated using Météo-France operational *ARPEGE* NWP 4-D-Var assimilation system for a period of 3 months. A data-assimilation procedure has been designed and run on 6-h windows. The procedure includes: (1) 4-D-Var assimilating both ozone and operational NWP standard observations, (2) *ARPEGE* transporting ozone as a passive-tracer, (3) *MOCAGE*, the Météo–France chemistry

They found that the influence of the ozone assimilation on the wind analysis was positive in the lower stratosphere, but its improvement was small.

ing the 4-D-Var process, the evolution of the linearized forecast model and its adjoint act as an additional constraint (Andersson et al., 1994).

Ozone assimilation Can ozone data be used to infer stratospheric winds?

©ECMWF 2007

Ozone assimilation Can 4D-Var infer stratospheric winds from ozone data?

- The answer is: Not yet.
- Assimilation of ozone profile data causes large and unrealistic T/U/V increments near the stratopause to accommodate the observed discrepancies between background and data
- A large part of these discrepancies are due to biases (in both data and model)
- It is natural for 4D-Var to make adjustments to the flow where constraints are few:
 - Lack of wind observations
 - Large background uncertainties
- A short-term fix is to disable this feature for the assimilation of ozone and other trace gases (use the background flow for ozone transport during minimisation)
- Comprehensive ozone bias correction (as for radiances) will help.

©ECMWF 2007

Poor coverage of observation data

- Yeah, chemical data often have a severe shortage, but we have many satellites for chemical constituents now.
- Low quality of observation data
 - Yeah, remote-sensing observations are often inaccurate, but NWP also has the same problems.

Low quality of chemistry models

 Yeah, but inert chemical constituents must be performed as accurate as water vaper in NWP models.

• Inaccuracy of error covariance

• Hmm, between chemistry and dynamics...

I want to check the feasibility of the dynamical integration under the real condition.

Coverage of observation data

- Some *plumes* are closely chased from its source like volcanic ash.
- Quality of observation data
 - Constituents are sometimes measured with an extremely high accuracy like radioisotopes.

Quality of chemistry models

 It's possible to use a *perfectly inert* constituent as a tracer like volcanic ash or radioisotopes.

Accuracy of error covariance

If the error covariance does matter, the variable localization can be used?

Wind+chemistry data assimilation (under construction)

- I'll investigate the concentration-wind interaction in the troposphere especially in the PBL using NHM-Chem-LETKF.
- Hopefully, to use constituents from a simple emission source, chemically inert, and measured with high accuracy/frequency.
 - Ozone? Carbon dioxide? Mineral dust? Volcanic ash? Radioisotopes?

Fukushima radionuclide dispersion simulation

Plumes of the Fukushima nuclear accident

MRI/JMA radionuclide dispersion model (NHM-Chem)

Fukushima radionuclide dispersion simulation

Journal of the Meteorological Society of Japan, Vol. 95, No. 6, pp. 447–454, 2017 DOI:10.2151/jmsj.2017-025

447

Method: LETKF

NOTES AND CORRESPONDENCE

The Impact of Surface Wind Data Assimilation on the Predictability of Near-Surface Plume Advection in the Case of the Fukushima Nuclear Accident

Tsuyoshi Thomas SEKIYAMA, Mizuo KAJINO, and Masaru KUNII

Meteorological Research Institute, Tsukuba, Japan

(Manuscript received 24 March 2017, in final form 4 August 2017)

Abstract

We investigated the predictability of plume advection in the surface wind data assimilation by using radioactive cesium emitted

2011 as an atmospheric tracer. We conducted two experi Japan for March 15, 2011 with a 3-km horizontal resoluti static weather forecast model and local ensemble transform system. The assimilated meteorological data were obtained Meteorological Agency operational numerical weather pre-The standard archives do not contain land-surface wind d trations were examined for plume arrival times at 40 obs. average. In contrast, the mean error of the AMeDAS ex AMeDAS surface wind observations) was 72.8 min, whic

sonosphere and the impact of AMeDAS ma nuclear accident in March

This work was just published: NOT chemical BUT only meteorological data assimilation. We explored the for the standard experiment (assimilating only the standard importance of surface wind accuracy for the predictability of plume advection.

experiment. This result indicates that the plume prediction has a reasonable accuracy for the environmental emergency response and the prediction can be significantly improved by the surface wind data assimilation.

Fukushima radionuclide dispersion simulation

Integration of Dynamics in NWP and Tracer Models

		🖬 kaken.nil.ac.jp	and the second se		
AKEN	Search Research Projects	Search Researchers	English		
eack to previous page					
Simultaneous plume advecti	data assimilation	n of wind velocities and tracer concentrations for	Research Project		
Project/Area Number	17K00533	FY2017~FY2020	Method: LETKF		
Research Category Allocation Type Section	Grant-In-Aid for Scientific Hese Multi-year Fund 一般	基盤(C)			
Research Field Research Institution	Environmental dynamic analysi Japan, Meteorological Researc	is ch Institute			
Principal Investigator	関山 剛 気象庁気象研究所,	環境・応用気象研究部, 主任研究官 (90354498)			
Project Period (FY)	2017-04-01 – 2021-03-31				
Project Status	Granted(Fiscal Year 2017)	PI: T.T. Seki	vama, but		
Budget Amount *help	¥4,810,000 (Direct Cost : ¥3,7 Fiscal Year 2020 : ¥910,000 (D Fiscal Year 2019 : ¥910,000 (D Fiscal Year 2018 : ¥1,430,000 (Fiscal Year 2017 : ¥1,560,000 (700,000、Indirect Cost : ¥1,110,000) Direct Cost : ¥700,000、Indirect Cost : ¥210,000) Direct Cost : ¥700,000、Indirect Cost : ¥210,000) (Direct Cost : ¥1,100,000、Indirect Cost : ¥330,000) (Direct Cost : ¥1,200,000、Indirect Cost : ¥360,000)	no co-investigators		
Keywords	数値シミュレーション / データ	7同化 / 気象学 / 大気化学			

Summary

 Data assimilation of atmospheric chemistry is the frontier of atmospheric science!

 Data assimilation of atmospheric chemistry has been used for environmental issues, e.g., chemical weather forecasts, chemical species emission estimation, etc.

 Data assimilation of atmospheric chemistry will be integrated with NWP, hopefully.