The analog data assimilation: method, applications and implementation

Pierre Tandeo pierre.tandeo@imt-atlantique.fr

IMT-Atlantique, Brest, France

16th of February 2018

Before starting

Works in collaboration with:

P. Ailliot Univ. Brest France

- *R. Lguensat* Univ. Grenoble France
- *R. Fablet* IMT-Atlantique France
- *M. Pulido* Univ. Reading UK

J. Ruiz Univ. Buenos Aires Argentina

Who am I:

- Master in applied mathematics
- PhD in spatial oceanography (IFREMER, France)
- Postdoc in atmospheric sciences (Univ. Corrientes, Argentina)
- Postdoc and Associate Professor (IMT-Atlantique, France)

General Concept

Outline

Analog forecasting

General formulation Different implementations

Analog data assimilation

Comparison with model-driven approach General implementation

Experimental settings

Classic VS analog data assimilation Analog data assimilation for model evidence Global VS local analog strategies

Applications

Using satellite data Using numerical simulations

Conclusions and perspectives

Conclusions Perspectives AnDA references

Analog forecasting (general formulation)

- State of the art:
 - introduced by [Lorenz, 1969]
 - destroyed by [Van Den Dool, 1994]
 - revival (large datasets + machine learning) by [Zhao and Giannakis, 2016]
- Analog forecasting:
 - use historical datasets (observations, simulations)
 - use the k-nearest neighbors
 - emulate the dynamical model

Analog forecasting (different implementations)

- Weighted mean of the successors (locally constant): $x^{f}(t+1) = \sum_{k=1}^{K} \omega_{k}[x(t)]s_{k}[x(t)]$
- Weighted mean of the increments (locally incremental): $x^{f}(t+1) = x(t) + \sum_{k=1}^{K} \omega_{k}[x(t)] (s_{k}[x(t)] - a_{k}[x(t)])$
- Regression between analogs and successors (locally linear): $x^{f}(t+1) = \beta_{0}[x(t)] + \beta_{1}[x(t)]x(t)$

Analog data assimilation (model-driven VS data-driven)

 \Rightarrow Share the same sequential framework (Kalman/particle filter)

Analog data assimilation (general implementation)

Nonlinear state-space model (analog forecasting operator A):

$$\begin{aligned} \mathbf{x}(t) &= \mathcal{A}\left(\mathbf{x}(t-\mathrm{d}t),\boldsymbol{\eta}(t)\right) & (1) \\ \mathbf{y}(t) &= \mathbf{H}\mathbf{x}(t) + \boldsymbol{\epsilon}(t) & (2) \end{aligned}$$

Sequential implementation:

Experimental settings (model-driven VS data-driven)

- simulated data (Lorenz-63)
- 1 obs. variable
 (x₁ with R=2)
- partial obs.
 (8 time steps)

Figure 1: Effect of filtering method and catalog size on state reconstruction

 \Rightarrow Equivalence for large enough catalog size

Experimental settings (model evidence)

Figure 2: Scheme of the Analog Data Assimilation with various catalogs

- same previous experiment
- 3 catalogs with different parameters (θ₁, θ₂, θ₃)
- obs. generated with θ_1

 \Rightarrow Able to retrieve the good parameterization:

 θ_1 (61%), θ_2 (27%), θ_3 (12%)

Experimental settings (global VS local analogs)

- simulated data (Lorenz-96)
- 20 obs. variables (noise R=2)
- partial obs.
 (4 time steps)

Figure 3: Effect of local and global analogs on state reconstruction

 \Rightarrow Local analog strategy outperforms the global one

Applications (use of satellite historical datasets)

- Daily and mesoscale datasets
- Synergy between satellite sources
- Large number of already seen situations (e.g., eddy motion)

Figure 4: Surface observations of temperature (left, 40 years) or salinity (right, 10 years) with oceanic currents (both, 25 years). Full animation: https://www.youtube.com/watch?v=Wn5grSFPQFA.

Applications (results exploiting satellite historical datasets)

Figure 5: Comparison between classic interpolation and interpolation based on analogs for ocean currents (top) and temperatures (bottom).

 \Rightarrow Analog-based interpolations learn adaptively: advection, diffusion and spatial correlation lengths.

Applications (use of ensemble simulations)

Figure 6: Examples of ensemble simulations in oceanography (OCCIPUT dataset, top) and in climate (CMIP dataset, bottom).

 \Rightarrow 2 ongoing projects in oceanography (comparison with classic data assimilation) and meteorology/climate (model evidence)

Conclusions

- Data-driven assimilation (exploit historical datasets: observations, simulations)
- Various implementations (global/local analogs, AnEnKF/AnPF/AnEnKS)
- Easy, fast and flexible, especially for local/partial analysis (compared to model-driven data assimilation)
- Python library on GitHub (https://github.com/ptandeo/AnDA)

9 commits	ទ្រ 1 branch	♥ 0 releases	L 1 contributor
Branch: master - New pull request			Find file Clone or download -
ptandeo Update README.md			Latest commit 698d9e6 Dec 23, 2017
ipynb_checkpoints	AnDA_V1		a year ago
AnDA_codes	AnDA_V1		a year ago
README.md	Update REA	DME.md	2 months ago
test_AnDA.ipynb	AnDA_V1		a year ago

Perspectives

- Methodology:
 - transform raw data into attractor (see [Brunton et al., 2017])
 - automatic distance learning
 - other possible forecast operators (e.g., neural nets)
- Applications:
 - complex dynamical systems (ecology, meteorology/climate, medicine, etc...)
 - no available models and lot of data
- Collaborations are welcome!

AnDA References

Methodological publications:

- Lguensat et al. 2017, The Analog Data Assimilation, Monthly Weather Review
- Tandeo et al. 2015, Combining Analog Method and Ensemble Data Assimilation: Application to the Lorenz-63 Chaotic System, Machine Learning and Data Mining Approaches to Climate Science (Springer)
- Tandeo et al. 2014, The Analog Ensemble Kalman Filter and Smoother, "Climate Informatics" workshop, Boulder (CO)

Application publications:

- Fablet et al. 2017, Data-driven Methods for Spatio-Temporal Interpolation of Sea Surface Temperature Images, IEEE Transactions on Computational Imaging
- Tandeo et al. 2015, The Analog Data Assimilation: Application to 20 Years of Altimetric Data, "Climate Informatics" workshop, Boulder (CO)

IMT-Atlantique: Birthplace of AnDA

Thank you for your attention! Any questions?

pierre.tandeo@imt-atlantique.fr

Cited references

Brunton, S., Brunton, B., Proctor, J., Kaiser, E., and Kutz, J. (2017).Chaos as an intermittently forced linear system. Nature communications, 8(1):19.

Lorenz, E. N. (1969).

Atmospheric predictability as revealed by naturally occurring analogues.

Journal of the Atmospheric Sciences, 26(7):636–646.

Van Den Dool, H. M. (1994). Searching for analogues, how long must we wait? Tellus A, 46(3):314–324.

Zhao, Z. and Giannakis, D. (2016). Analog forecasting with dynamics-adapted kernels. Nonlinearity, 29(9):2888-2939.