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Analog forecasting (general formulation)

I State of the art:
I introduced by [Lorenz, 1969]
I destroyed by [Van Den Dool, 1994]
I revival (large datasets + machine learning) by

[Zhao and Giannakis, 2016]

I Analog forecasting:
I use historical datasets (observations, simulations)
I use the k-nearest neighbors
I emulate the dynamical model



Analog forecasting (different implementations)

I Weighted mean of the successors (locally constant):
x f (t + 1) =

∑K
k=1 ωk [x(t)]sk [x(t)]

I Weighted mean of the increments (locally incremental):
x f (t + 1) = x(t) +

∑K
k=1 ωk [x(t)] (sk [x(t)]− ak [x(t)])

I Regression between analogs and successors (locally linear):
x f (t + 1) = β0[x(t)] + β1[x(t)]x(t)



Analog data assimilation (model-driven VS data-driven)

⇒ Share the same sequential framework (Kalman/particle filter)



Analog data assimilation (general implementation)

Nonlinear state-space model (analog forecasting operator A):

x(t) = A (x(t − dt),η(t)) (1)

y(t) = Hx(t) + ε(t) (2)

Sequential implementation:



Experimental settings (model-driven VS data-driven)

Figure 1: Effect of filtering method and catalog size
on state reconstruction

I simulated data
(Lorenz-63)

I 1 obs. variable
(x1 with R=2)

I partial obs.
(8 time steps)

⇒ Equivalence for large enough catalog size



Experimental settings (model evidence)

Figure 2: Scheme of the Analog Data Assimilation with various catalogs

I same previous experiment

I 3 catalogs with different
parameters (θ1, θ2, θ3)

I obs. generated with θ1

⇒ Able to retrieve the good
parameterization:
θ1 (61%), θ2 (27%), θ3 (12%)



Experimental settings (global VS local analogs)

Figure 3: Effect of local and global analogs on
state reconstruction

I simulated data
(Lorenz-96)

I 20 obs. variables
(noise R=2)

I partial obs.
(4 time steps)

⇒ Local analog strategy outperforms the global one



Applications (use of satellite historical datasets)
I Daily and mesoscale datasets
I Synergy between satellite sources
I Large number of already seen situations (e.g., eddy motion)

Figure 4: Surface observations of temperature (left, 40 years) or salinity
(right, 10 years) with oceanic currents (both, 25 years). Full animation:
https://www.youtube.com/watch?v=Wn5grSFPQFA.

https://www.youtube.com/watch?v=Wn5grSFPQFA


Applications (results exploiting satellite historical datasets)

Figure 5: Comparison between classic interpolation and interpolation
based on analogs for ocean currents (top) and temperatures (bottom).

⇒ Analog-based interpolations learn adaptively: advection,
diffusion and spatial correlation lengths.



Applications (use of ensemble simulations)

Figure 6: Examples of ensemble simulations in oceanography (OCCIPUT
dataset, top) and in climate (CMIP dataset, bottom).

⇒ 2 ongoing projects in oceanography (comparison with classic
data assimilation) and meteorology/climate (model evidence)



Conclusions

I Data-driven assimilation
(exploit historical datasets: observations, simulations)

I Various implementations
(global/local analogs, AnEnKF/AnPF/AnEnKS)

I Easy, fast and flexible, especially for local/partial analysis
(compared to model-driven data assimilation)

I Python library on GitHub
(https://github.com/ptandeo/AnDA)

https://github.com/ptandeo/AnDA


Perspectives

I Methodology:
I transform raw data into attractor (see [Brunton et al., 2017])
I automatic distance learning
I other possible forecast operators (e.g., neural nets)

I Applications:
I complex dynamical systems

(ecology, meteorology/climate, medicine, etc...)
I no available models and lot of data

I Collaborations are welcome!
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IMT-Atlantique: Birthplace of AnDA

pierre.tandeo@imt-atlantique.fr
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