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Analog forecasting (general formulation)

» State of the art:
» introduced by [Lorenz, 1969]
» destroyed by [Van Den Dool, 1994]

» revival (large datasets + machine learning) by
[Zhao and Giannakis, 2016]

> Analog forecasting:
» use historical datasets (observations, simulations)
> use the k-nearest neighbors
» emulate the dynamical model
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Analog forecasting (different implementations)

Locally-Constant Locally-Incremental Locally-Linear
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» Weighted mean of the successors (locally constant):
X (24 1) = T4 g wlx()]se[x(2)]

» Weighted mean of the increments (locally incremental):
xF(+1) = x(1) + Sy wilx()] (sklx(0)] — axlx(2)])

> Regression between analogs and successors (locally linear):

x"(t +1) = Bolx(t)] + Bulx(t)]x(t)



Analog data assimilation (model-driven VS data-driven)
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= Share the same sequential framework (Kalman/particle filter)



Analog data assimilation (general implementation)

Nonlinear state-space model (analog forecasting operator A):

x(t) = A(x(t—dt),n(t)) (1)

y(t) = Hx(t)+€(t) (2)
Sequential implementation:
Previous spread Analog Dynamical Model Forecast spread
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Experimental settings (model-driven VS data-driven)
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Figure 1: Effect of filtering method and catalog size

on state reconstruction

= Equivalence for large enough catalog size

1
Size of the catalog (in Lorenz-63 times)

» simulated data
(Lorenz-63)

> 1 obs. variable
(x1 with R=2)

> partial obs.
(8 time steps)



Experimental settings (model evidence)
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Figure 2: Scheme of the Analog Data Assimilation with various catalogs

> same previous experiment = Able to retrieve the good

» 3 CatalOgS with different parameterization:
parameters (61, 0, 03) 01 (61%), 0> (27%), 03 (12%)
> obs. generated with 6;



Experimental settings (global VS local analogs)

Noisy and partial observations

d
o o 7
£ £ ¢l
: ik
£ i
2 .
T== - = » simulated data
§ 0 & 2 @ % 4
o (Lorenz-96)
Global analog data assimilation Local analog data assimilation
O R T TR ) Tormge Y R = .
1‘!5* gt i 'ﬂ;?:% e o o ) > 20 obs. variables
i e (noise R=2)
R et ket I e L
g o R LY .
LR LR > partial obs.
: 2 (4 time steps)
1 1

Figure 3: Effect of local and global analogs on
state reconstruction

= Local analog strategy outperforms the global one



Applications (use of satellite historical datasets)

» Daily and mesoscale datasets
> Synergy between satellite sources
» Large number of already seen situations (e.g., eddy motion)

10guillet 2012, SRS 20a00t2012

Figure 4: Surface observations of temperature (left, 40 years) or salinity
(right, 10 years) with oceanic currents (both, 25 years). Full animation:
https://www.youtube.com/watch?v=Wn5grSFPQFA.


https://www.youtube.com/watch?v=Wn5grSFPQFA

Applications (results exploiting satellite historical datasets)
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Figure 5: Comparison between classic interpolation and interpolation
based on analogs for ocean currents (top) and temperatures (bottom).

= Analog-based interpolations learn adaptively: advection,
diffusion and spatial correlation lengths.



Applications (use of ensemble simulations)

one-member spin-up .20 yrs

50 members (1/4%) driven by same atmospheric forcing (ERAI/DFS5.2)
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Initial perturbation strategy:

50 stochastic equation of state
‘appiied for ONE year (Brankart et a 2013)
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Figure 6: Examples of ensemble simulations in oceanography (OCCIPUT
dataset, top) and in climate (CMIP dataset, bottom).

= 2 ongoing projects in oceanography (comparison with classic
data assimilation) and meteorology/climate (model evidence)




Conclusions

» Data-driven assimilation

(exploit historical datasets: observations, simulations)

» Various implementations
(global/local analogs, AnEnKF/AnPF/AnEnKS)

» Easy, fast and flexible, especially for local/partial analysis

(compared to model-driven data assimilation)

» Python library on GitHub

(https://github.com/ptandeo/AnDA)
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https://github.com/ptandeo/AnDA

Perspectives

Magnetic
field

ECG

» Methodology:
» transform raw data into attractor (see [Brunton et al., 2017])

» automatic distance learning
» other possible forecast operators (e.g., neural nets)
» Applications:
» complex dynamical systems
(ecology, meteorology/climate, medicine, etc...)
> no available models and lot of data

» Collaborations are welcome!
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IMT-Atlantique: Birthplace of AnDA
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