

Establishing an integrated MRV system of greenhouse gas emission from wetlands with Japanese earth-observation/modelling technologies and a data assimilation technique

Hironori Arai^{1,2)}

Wataru Takeuchi¹⁾, Kei Oyoshi³⁾, Lam Dao Nguyen⁴⁾, Kazuyuki Inubushi⁵⁾

RSEI

3)

Koji Terasaki²⁾, Takemasa Miyoshi²⁾, Hisashi Yashiro²⁾

Outline

0. Motivation to DA (Story taking me here today)

- 1. Background & Objective
- 2. Ground observation of greenhouse gas emission and statistical modeling
- **3. Satellite remote sensing of GHG emitters**
 - Cropping calendar & the adjacent fallow length
 - Paddy soil/water covered by rice plants
 - Top down verification with GOSAT

4. My next work with DA

Drainage on peatlands in SE asia

CO₂ emission (Mt C/year) from peat in south east Asia and Japanese total emission.

Hooijer et al., 2006; Hatano, 2009

Target fields

Agricultural land

Burnt Forest

KBDI index are used to compute the balance between evapotranspiration and precipitation. [Keetch et. al, 1965]

 $dQ = \frac{[800-Q][.968 \exp(.0486T) - 8.30] d\tau}{1 + 10.88 \exp(-.0441R)} \ge 10^{-3}$

- Presently, this index is derived from satellite observation:
 - Iand surface temperature (LST) from MTSAT received at IIS/U-Tokyo
 - rainfall from global satellite mapping (GSMaP) provided by JAXA EROC.
- Ground water table (GWT) is modeled as a function of KBDI

Lower ground water table of peatland in Indonesia are prone to fires and large carbon emission sources

Takeuchi, 2013

豪雨事例へのひまわり8号同化

色:モデルと実観測それぞれの赤外輝度温度

Simulated/Observed Brightness Temperature B14 (K), at 18:00z08SEP201

高: 低い雲/晴天

台風本体や関連する雲域が劇的に改善

三好2017

Cycle from Observation to Countermeasure

Observation of the effect

Modified from Yasuoka 2015

Outline

0. Motivation to DA (Story taking me here today)

1. Background & Objective

- 2. Ground observation of greenhouse gas emission and statistical modeling
- **3. Satellite remote sensing of GHG emitters**
 - Cropping calendar & the adjacent fallow length
 - Paddy soil/water covered by rice plants
 - Top down evaluation with GOSAT

4. My next work with DA

CH_4

Characteristics of Agriculture in Monsoon Asia

Development economic assessment to realize scientific decision making

Verification with the GOSAT and atmospheric simulation

Unveiling the potential of CH₄ reduction and the baseline

Future prediction of CH₄ emission in global scale

Monitoring/Reporting long-term changes of rice cropping frequency, fallow season management and inundation status

Monitoring present status of water management

Outline

- **0.** Motivation to DA (Story taking me here today)
- 1. Background & Objective
- 2. Ground observation of greenhouse gas emission and statistical modeling
- **3. Satellite remote sensing of GHG emitters**
 - Cropping calendar & the adjacent fallow length
 - Paddy soil/water covered by rice plants
 - Top down verification with GOSAT

4. My next work with DA

 Continuously flooded nearly through a year
 +

High straw production

 Anaerobic stress for rice production
 High GHGs emission

- (Alternate Wetting and Drying)
- Irrigation-water saving
 Anaerobic-stress mitigation
 GHGs mitigation

Obtained annual CH₄ emission data so far

EF baselines in philippines (GoP 2014, Basak 2016)

- Single crop (rainy season)
- Single crop (dry season)
- \cdot double crop

(n=3)

Characteristics of the Mekong delta

Characteristics of the Mekong delta

Characteristics of the Mekong delta

- Reduction of irrigation rate & GHGs (2012-2016)

- Increase of rice grains and its quality

Flow chart

IPCC guideline (Tier1) [Emission factor × Scaling factor in IPCC guideline]

Cropping calendar evaluation with MODIS—NDVI (LMF-KF)

Semi-empirical daily CH₄ flux (mg C m⁻² day⁻¹) Model

Outline

- **0.** Motivation to DA (Story taking me here today)
- 1. Background & Objective
- 2. Ground observation of greenhouse gas emission and statistical modeling

3. Satellite remote sensing of GHG emitters

- Cropping calendar & the adjacent fallow length
- Paddy soil/water covered by rice plants
- Top down verification with GOSAT

4. My next work with DA

Satellite remote sensing of soils

-Freeman-Durden decomposition-

Dominant scattering type

Single scattering

Single (+ Volume)

Single + Volume

Specular reflection

Volume + Double

Double (+ Volume)

SCANSAR (intensity - $HH\sigma^{0}$)

Dry season (2015 Apr. 10)

Flooding season (2015 Oct. 23)

Double bounce detection by SCANSAR (intensity - HH σ^{0})

Dry season (2015 Apr. 10)

Flooding season (2015 Oct. 30) -LANDSAT-8-

Flooding season (2015 Oct. 23)

Rainy season (2015 Jul. 03)

Full-polarimetry (3m)

10000

-10000

-20000

-30000

-40000

-50000

HV(dB*1000)

0

 $(dB) = 0.550^{HV} + 12.9^{COSINE}(IA) - 11.2$

1

Floodability analysis

(Cumulative LSWC/ observation scenes)

MRV and available data

Daily ALOS2-LandSurfaceWaterCoverage estimation

= $(ALOS2floodability*\omega + \zeta)* \exp(AMSRNDFI*\delta-MODISLSVC*\delta)$

Estimated daily ALOS2-LSWC (10km-res.)

MONITORING with ALOS2 (since 2014) **REPORTING** with AMSR, MODIS, GCOM-C/W (since 2002, daily)

emission REPORT (250m res., 2002-) **VERIFIED**!

NICAM-TM # with different altitudes (2000/Jan.)

Direct comparison between GOSAT and emission data is meaningless...

 \rightarrow Need transport model! But,,,,

Check spin-up status

Long years are needed for spin up + strong dependency on initial condition,,, →DA is essential!

Geoscientific Model Development

An interactive open-access journal of the European Geosciences Union

GOSAT-4DVAR ?

EGU.eu | EGU Journals | EGU Highlight Articles | Contact | Imprint |

Geosci. Model Dev., 10, 2201-2219, 2017 https://doi.org/10.5194/gmd-10-2201-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License.				N	Volume 10, issue 6
	Article	Assets	Peer review	Metrics	Related articles

Development and technical paper

15 Jun 2017

A 4D-Var inversion system based on the icosahedral grid model (NICAM-TM 4D-Var v1.0) -Part 2: Optimization scheme and identical twin experiment of atmospheric CO₂ inversion

Yosuke Niwa et al.

Model code and software

NICAM-TM 4D-Var

1. H. Tomita and M. Satoh; 2. M. Sato, T. Matsuno, H. Tomita, H. Miura, T. Nasuno and S. Iga; 3. M. Satoh, H. Tomita, H. Yashiro, H. Miura, C. Kodama, T. Seiki, A. T. Noda, Y. Yamada, D. Goto, M. Sawada, T. Miyoshi, Y. Niwa, M. Hara, T. Ohno, S. Iga, T. Arakawa, T. Inoue, and H. Kubokawa

http://nicam.jp/hiki/?Research+Collaborations

"Variable localization" in an ensemble Kalman filter: Application to the carbon cycle data assimilation

Ji-Sun Kang,¹ Eugenia Kalnay,¹ Junjie Liu,² Inez Fung,² Takemasa Miyoshi,¹ and Kayo Ide¹

Flux estimation from atmospheric concentration by omitting multi-collinearity

 No direct emission or apriori info. is required!

Transparent MRV with NICAM-LETKF!

Back ground covariance matrices

Outline

- **0.** Motivation to DA (Story taking me here today)
- 1. Background & Objective
- 2. Ground observation of greenhouse gas emission and statistical modeling
- **3. Satellite remote sensing of GHG emitters**
 - Cropping calendar & the adjacent fallow length
 - Paddy soil/water covered by rice plants
 - Top down verification with GOSAT

4. My next work with DA

My next work with DA

Economic assessment of GHG mitigation under various uncertainties

Kalnay et al. 2017

And if possible...

Soil moisture/Drought assessment/GHG emission estimation with AHI-LST and its DA with atmospheric observation data

PM2.5 emission status estimation with AHI & NICAM-LETKF

Thank you for your attention

©JAXA