I. Covariance estimation in data assimilation
 A. Nonlinear and Gaussian state-space model
 B. What are Q and R covariances?
 C. Timeline of estimation of Q and R
 D. Methods comparison: preliminary results
 E. Summary about this review paper

II. A bunch of data-driven methods
 A. AnDA applied to spatial oceanography
 B. Deep learning on SAR images
 C. Predictability of rogue waves
 D. Machine learning for satellite data
 E. Machine learning for solar energy prediction
Covariance estimation in data assimilation
Nonlinear and Gaussian state-space model

The most popular formulation in DA is:

$$\begin{align*}
 \mathbf{x}(k) &= \mathcal{M}(k-1, \mathbf{x}(k-1)) + \eta(k), \\
 \mathbf{y}(k) &= \mathcal{H}(k, \mathbf{x}(k)) + \varepsilon(k),
\end{align*}$$

With important unknown covariance matrices \mathbf{Q} and \mathbf{R}:

$$\begin{align*}
 \eta(k) &\sim \mathcal{N}(0, \mathbf{Q}(k)) \\
 \varepsilon(k) &\sim \mathcal{N}(0, \mathbf{R}(k))
\end{align*}$$

→ Reconstruction of \mathbf{x} highly depends \mathbf{Q} and \mathbf{R}
→ Joint Estimation of \mathbf{Q} and \mathbf{R} is necessary
→ Many authors worked on this topic but...

Simulation results on the L96
Berry & Sauer 2013 [Tellus A]
Covariance estimation in data assimilation

What are Q and R covariances?

Model error Q represents:
- model deficiencies
- errors in the parameters
- unresolved scales
- errors in numerical schemes

Observation error R represents:
- instrument noise
- representativeness error
Covariance estimation in data assimilation
Timeline of estimation of Q and R

Research field initiated by Daley et al. 1992 [MWR] & Dee 1995 [MWR]
Covariance estimation in data assimilation
Methods comparison: preliminary results

Focus on 2 methods:
- Lag-Innovation (LI) method
- Expectation-Maximization (EM) algorithm
 - robust and accurate in practice

Numerical experiment:
- linear and Gaussian AR(1) model
- constant Q and R variances
- time varying Q and R variances

Offline estimation (constant Q & R):

Online estimation (varying Q & R):
Covariance estimation in data assimilation

Summary about this review paper

Schedule:
- draft available soon on arXiv
- accepted for submission in MWR
- ongoing simulation paper with L96 model & SPEEDY model

My feedbacks about such review paper:
- very long, lot of reading, need to be honest and exhaustive, sometimes boring…
- but I have now a global view of the methods
- nice to build collaborations
- I hope it will be useful!

→ See my presentation at the UQ workshop in February 2018 for more details
A bunch of data-driven methods
AnDA applied to spatial oceanography (2018-2020, with IFREMER and Univ. Grenoble)

Goal:
- adaptive spatio-temporal interpolator for spatial oceanography
- use an ensemble of numerical simulations (50 ensembles, 55 years)
- apply the Analog Data Assimilation (AnDA, Lguensat et al. 2017 [MWR])
A bunch of data-driven methods
Deep learning on SAR images (2016-2019, with IFREMER and Univ. Seattle & New Hampshire)

Goal:
- use 20x20 km annotated SAR images (37,560)
- apply deep learning to classify natural phenomena

Results:
- 98% accuracy!
- lot of applications

Ocean swell Wind streaks Convective cells Biological slicks
Sea ice Icebergs Oil sea Atmospheric & oceanic fronts
A bunch of data-driven methods
Predictability of rogue waves (2017-2019, with FEM and MIT)

Goal:
- nowcasting of extreme wave events (up to 5 minutes)
- apply a mix of data-driven & model-driven approaches

Mitsuyasu (2009) [J OCEANOGR]

Famous Draupner rogue wave
A bunch of data-driven methods
Machine learning for satellite data (with IFREMER and Météo-France)

Goal:
- post-process satellite SST data using atmospheric information
- use geostationary data and \textit{in situ} measurements (485,600 match-ups)
- apply machine learning regression algorithms

Results:
- 31\% of the variability is explained
- operationally applied at Météo-France
- Saux Picart et al. 2017 [REMOTE SENS]

- Raw bias
- Bias after correction
A bunch of data-driven methods
Machine learning for solar energy prediction (with Elum Energy, a French startup)

Goal:
- predict solar irradiance 6h ahead for solar panels and energy saving
- use geostationary data (2011-2016, hourly data, 0.05°)
- apply analog forecasting and other statistical methods

Results:
- method can be applied everywhere in Europe and Africa
- Ayet & Tandeo et al. 2018 [SOL ENERGY]

Persistency
- VAR(1)
- Analog forecasting
- Analog forecasting (with post-processing)