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Nonlinear and Gaussian state-space model
Covariance estimation in data assimilation

With important unknown covariance matrices Q and R:

Simulation results on the L96
Berry & Sauer 2013 [Tellus A]

The most popular formulation in DA is:

→ Reconstruction of x highly depends Q and R
→ Joint Estimation of Q and R is necessary
→ Many authors worked on this topic but...



What are Q and R covariances?
Covariance estimation in data assimilation

Model error Q represents:
- model deficiencies
- errors in the parameters
- unresolved scales
- errors in numerical schemes

Observation error R represents:
- instrument noise
- representativeness error

Scheme of the sequential DA:



Timeline of estimation of Q and R
Covariance estimation in data assimilation

Research field initiated by Daley et al. 1992 [MWR] & Dee 1995 [MWR]



Methods comparison: preliminary results
Covariance estimation in data assimilation

Focus on 2 methods:
- Lag-Innovation (LI) method
- Expectation-Maximization (EM) algorithm
- robust and accurate in practice

Numerical experiment:
- linear and Gaussian AR(1) model
- constant Q and R variances
- time varying Q and R variances

Offline estimation (constant Q & R): Online estimation (varying Q & R):



Summary about this review paper
Covariance estimation in data assimilation

Schedule:
- draft available soon on arXiv
- accepted for submission in MWR
- ongoing simulation paper with 
L96 model & SPEEDY model

My feedbacks about such review paper:
- very long, lot of reading, need to be honest 
and exhaustive, sometimes boring…
- but I have now a global view of the 
methods
- nice to build collaborations
- I hope it will be useful!→ See my presentation at the UQ workshop 

in February 2018 for more details



AnDA applied to spatial oceanography (2018-2020, with IFREMER and Univ. Grenoble)
A bunch of data-driven methods

Goal:
- adaptive spatio-temporal interpolator for spatial oceanography
- use an ensemble of numerical simulations (50 ensembles, 55 years)
- apply the Analog Data Assimilation (AnDA, Lguensat et al. 2017 [MWR])



Deep learning on SAR images (2016-2019, with IFREMER and Univ. Seattle & New Hampshire)
A bunch of data-driven methods

Goal:
- use 20x20 km annotated SAR images (37,560)
- apply deep learning to classify natural phenomena
Results:
- 98% accuracy!
- lot of applications

Ocean swell Wind streaks Convective cells

Sea ice Icebergs Oil sea Atmospheric & oceanic fronts

Biological slicks



Predictability of rogue waves (2017-2019, with FEM and MIT)
A bunch of data-driven methods

Goal:
- nowcasting of extreme wave events (up to 5 minutes)
- apply a mix of data-driven & model-driven approaches

Mitsuyasu (2009) [J OCEANOGR]

Famous Draupner rogue wave

https://docs.google.com/file/d/1p09t9c5u7x_swVq0zP9VX2_vGa8I1bOu/preview
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Machine learning for satellite data (with IFREMER and Météo-France)
A bunch of data-driven methods

Goal:
- post-process satellite SST data using atmospheric information
- use geostationary data and in situ measurements (485,600 match-ups)
- apply machine learning regression algorithms
Results:
- 31% of the variability is explained
- operationally applied at Météo-France
- Saux Picart et al. 2017 [REMOTE SENS]

- Raw bias
- Bias after correction



Machine learning for solar energy prediction (with Elum Energy, a French startup)
A bunch of data-driven methods

Goal:
- predict solar irradiance 6h ahead for solar panels and energy saving
- use geostationary data (2011-2016, hourly data, 0.05°)
- apply analog forecasting and other statistical methods
Results:
- method can be applied everywhere in Europe and Africa
- Ayet & Tandeo et al. 2018 [SOL ENERGY]

- Persistency
- VAR(1)
- Analog forecasting
- Analog forecasting 
(with post-processing)


