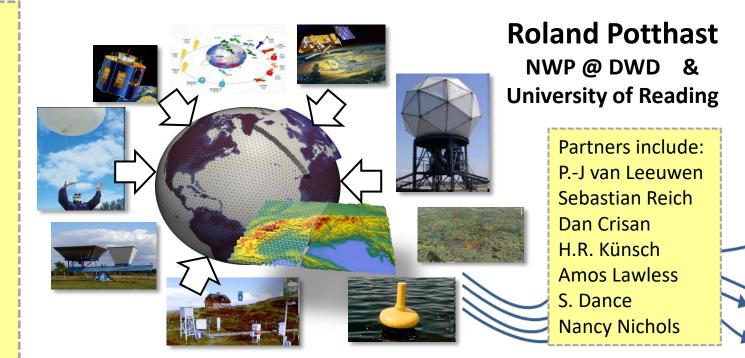


DWC

Ensemble Data Assimilation and Particle Filters for NWP

With the help of many people, in particular:

Anne Walter, Andreas Rhodin Harald Anlauf, Christina Köpken, Robin Faulwetter, Olaf Stiller, Alexander Cress, Martin Lange, Stefanie Hollborn, E. Bauernschubert, Christoph Schraff, Hendrik Reich, Klaus Stephan Ulrich Blahak



Heinz-Werner Bitzer, Annika Schomburg, Silke May, Marc Pondrom, Kristin Raykova, Thomas Rösch, Michael Bender, Christian Welzbacher, Lilo Bach, Lisa Neef, Zoi Paschalidi, Walter Acevedo, Axel Hutt, Daniel Egerer, Gerhard Paul, Ana Fernandez, Stefan Declair

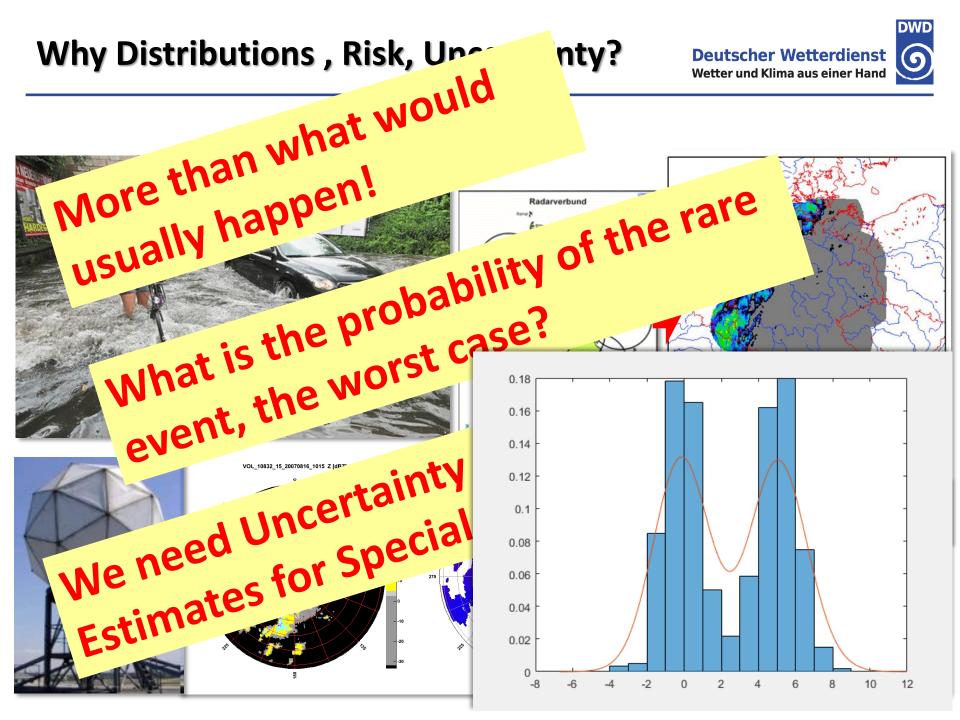
- Why and Where Distributions, Risk and Uncertainty?
- 2. Discussion of **Ensemble (+Particle) Methods**
- 3. Framework Global+LAM+LES Model: ICON and

ICON-EPS and the LEKTF+EnVAR/KENDA System

4. LAPF & LMCPF Particle Filters for Non-Gaussian Distributions – Details and Results

Why Distributions, Risk, Uncertainty?

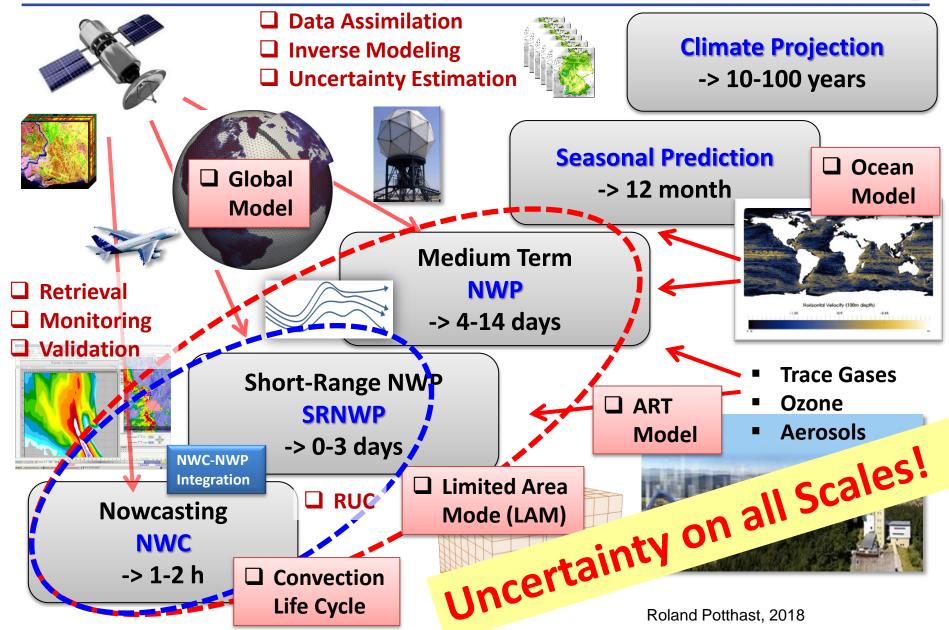
Deutscher Wetterdienst Wetter und Klima aus einer Hand

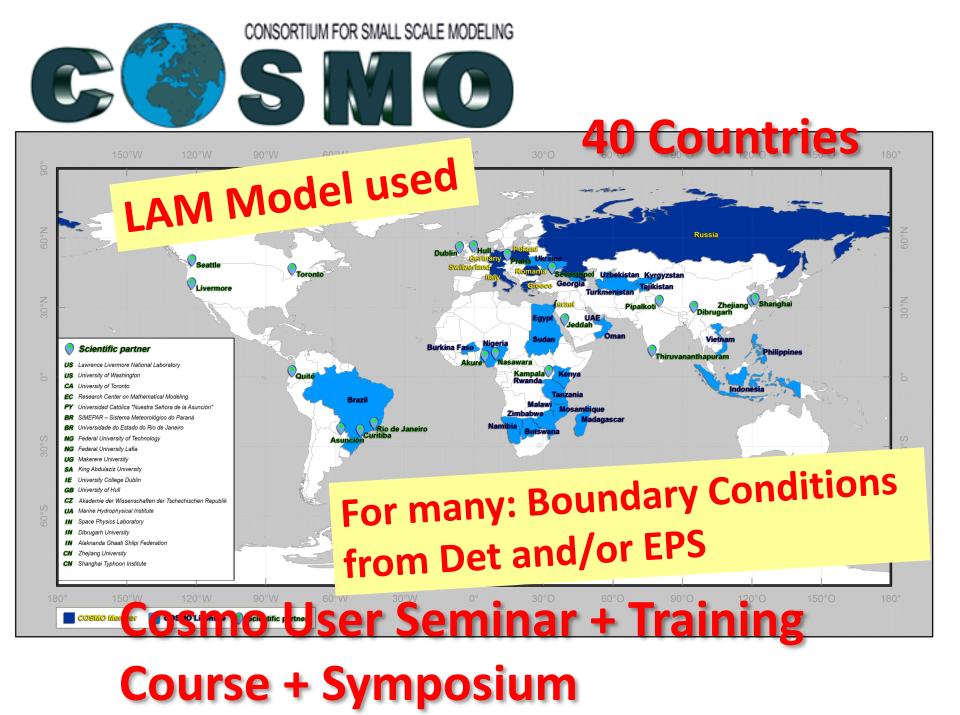


Why Distributions, Risk, Uncertainty?

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Framework Numerical Weather Prediction





Deutscher Wetterdienst Wetter und Klima aus einer Hand

1. Why and Where **Distributions, Risk and Uncertainty?**

2. Discussion of **Ensemble (+Particle) Methods**

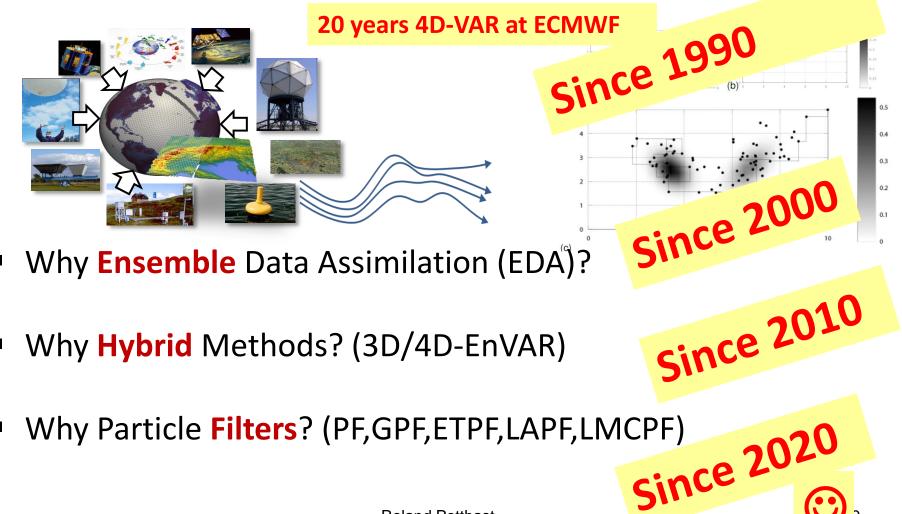
3. Framework Global+LAM+LES Model: ICON and

ICON-EPS and the LEKTF+EnVAR/KENDA System

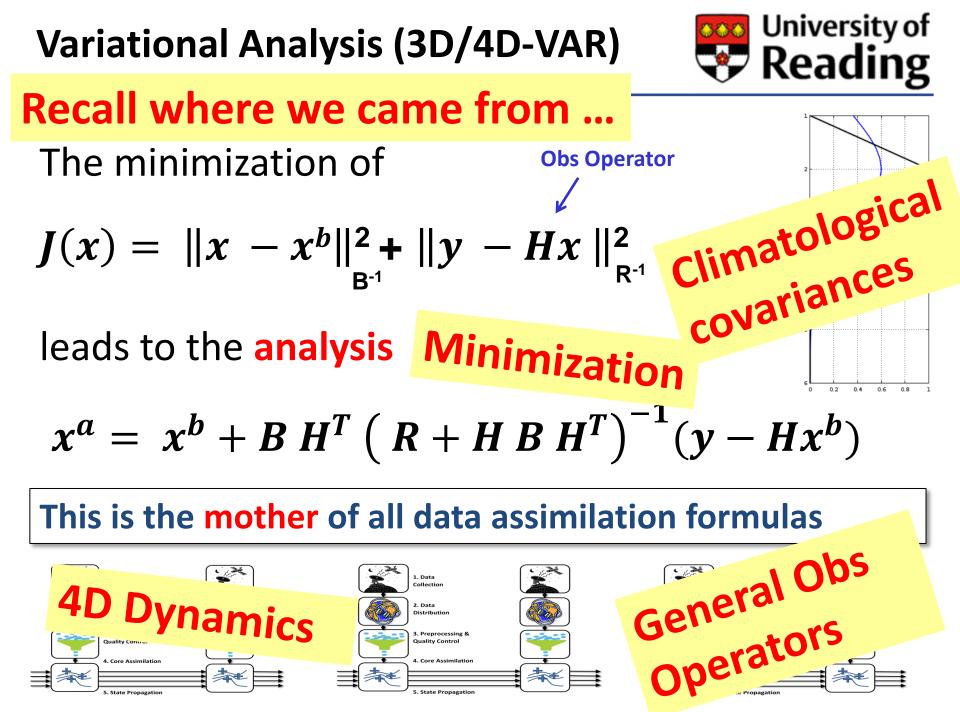
4. LAPF & LMCPF Particle Filters for Non-Gaussian Distributions – Details and Results

Data Assimilation Methods

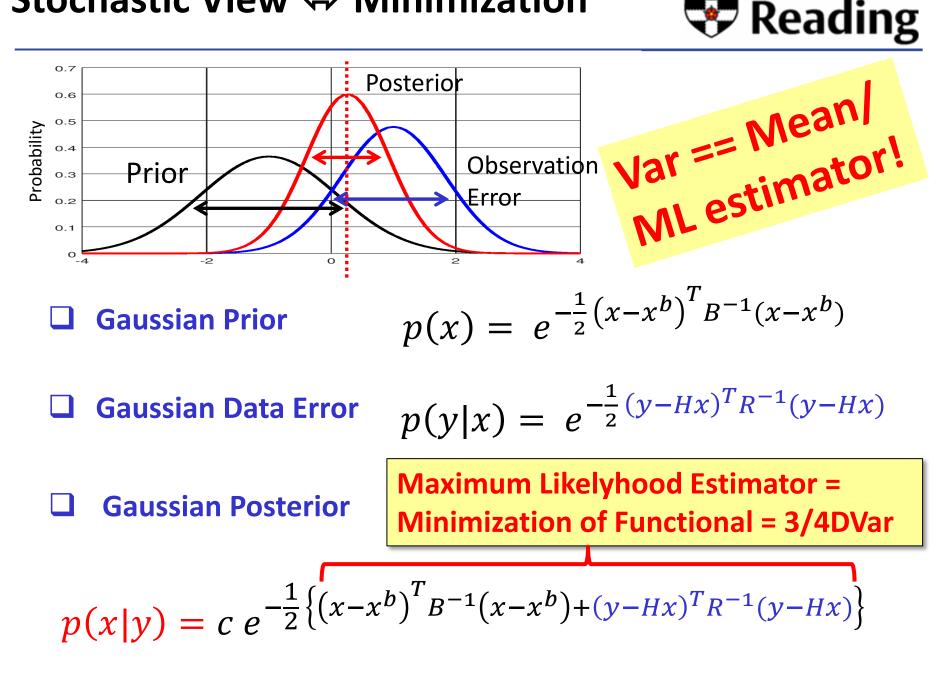
Why variational Data Assimilation (3D/4D-VAR)?



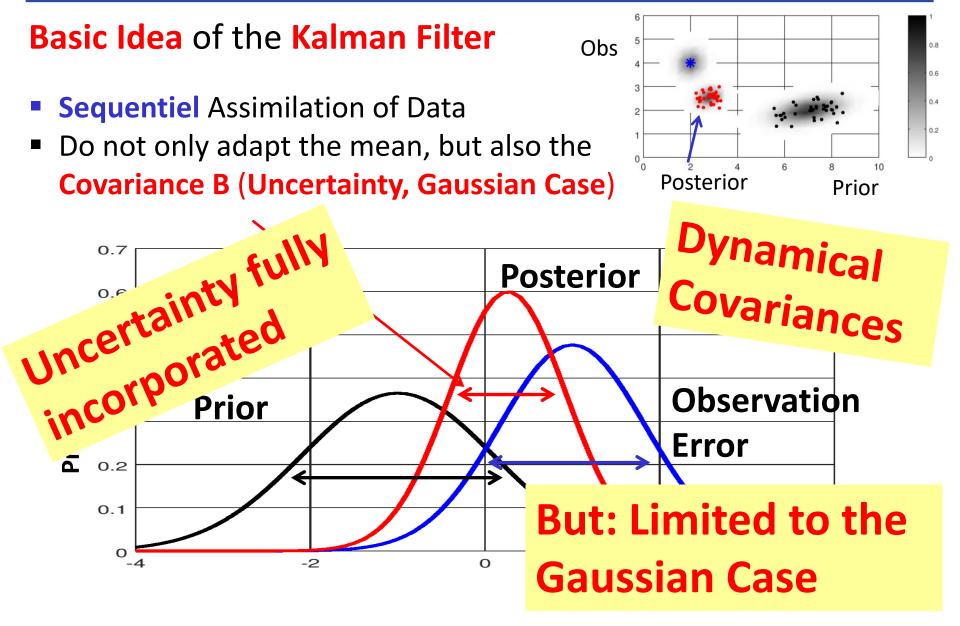
Roland Potthast



Stochastic View 🗇 Minimization



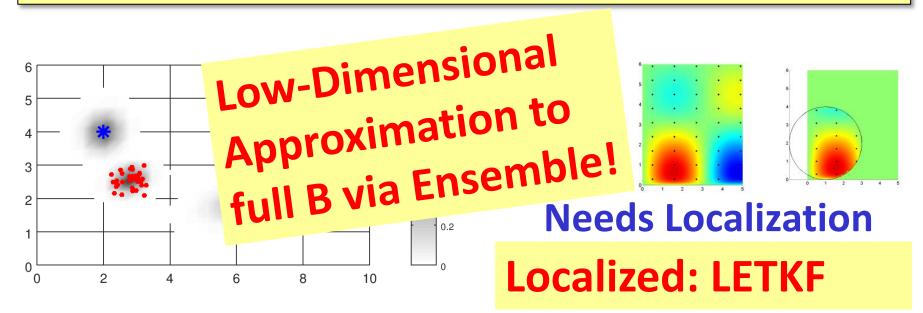
University of

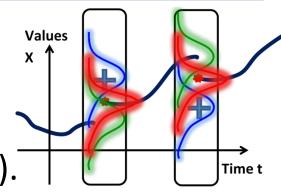


EDA: Ensemble Kalman Filter (EnKF)

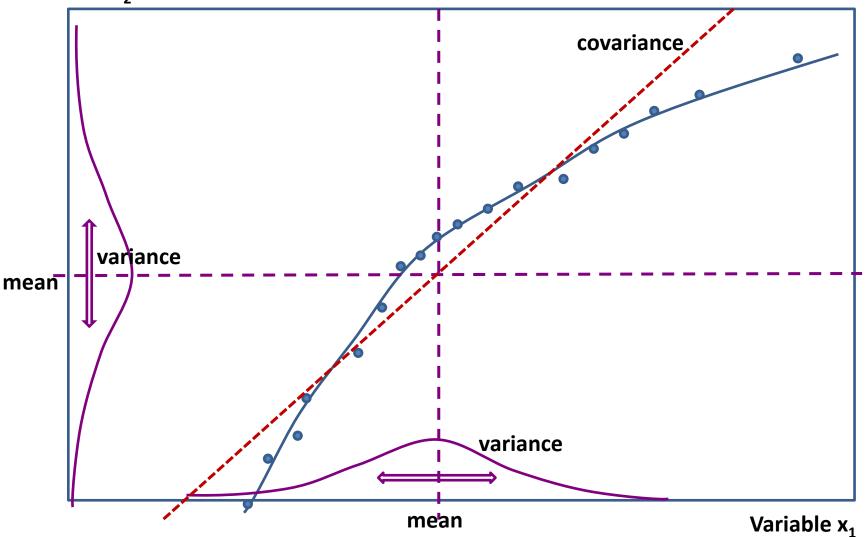
- Kalman Filter needs B update => expensive!
- Estimate B based on an ensemble of forecasted states (stochastic estimator).

B will be **flow-dependent** and variable, depending on the **model dynamics** and on the **observations**

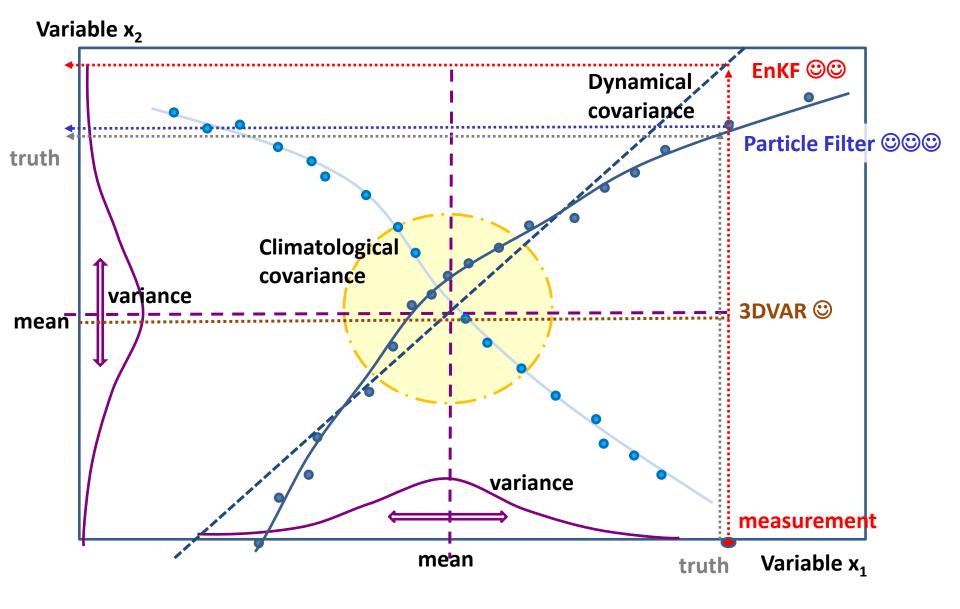




Using Perturbations, Climatological or Dynamical Covariances, and the Particle Filter



Using Perturbations, Climatological or Dynamical **Covariances, and the Particle Filter**



- Why and Where Distributions, Risk and Uncertainty?
- 2. Discussion of Ensemble (+Particle) Methods
- 3. Framework Global+LAM+LES Model: ICON and

ICON-EPS and the LEKTF+EnVAR/KENDA System

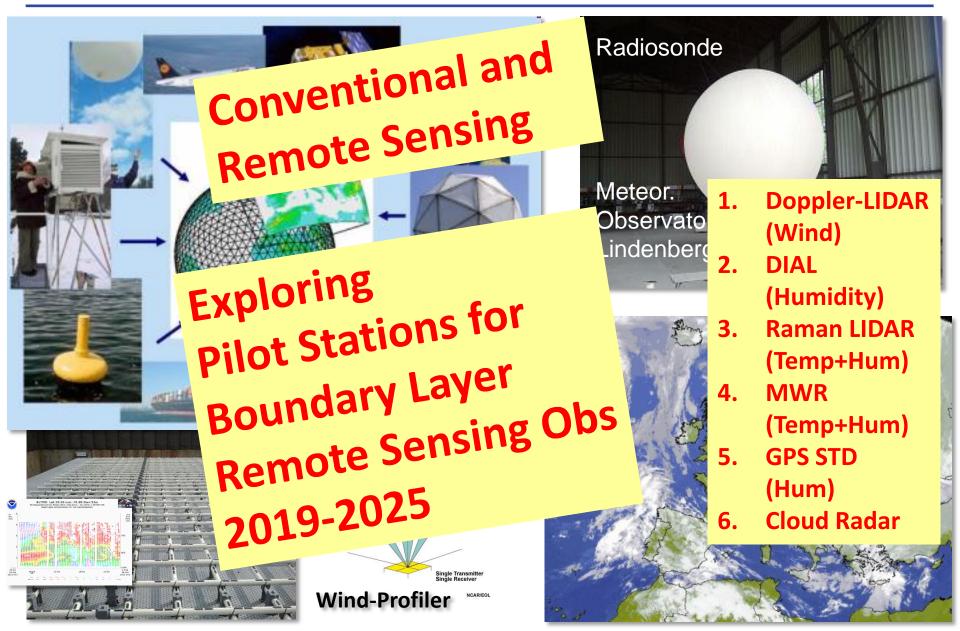
4. LAPF & LMCPF Particle Filters for Non-Gaussian Distributions – Details and Results

Global NWP Modelling: Det + EPS – Reality + Goals

Deutscher Wetterdienst Wetter und Klima aus einer Hand

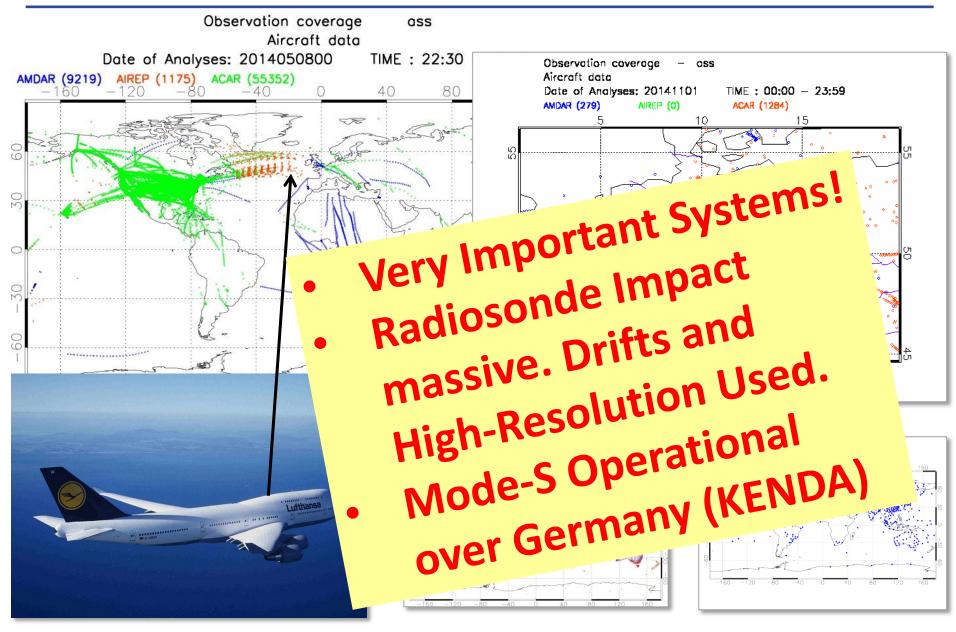
Full Observation System

Deutscher Wetterdienst Wetter und Klima aus einer Hand



Conventional Synop + Airplanes

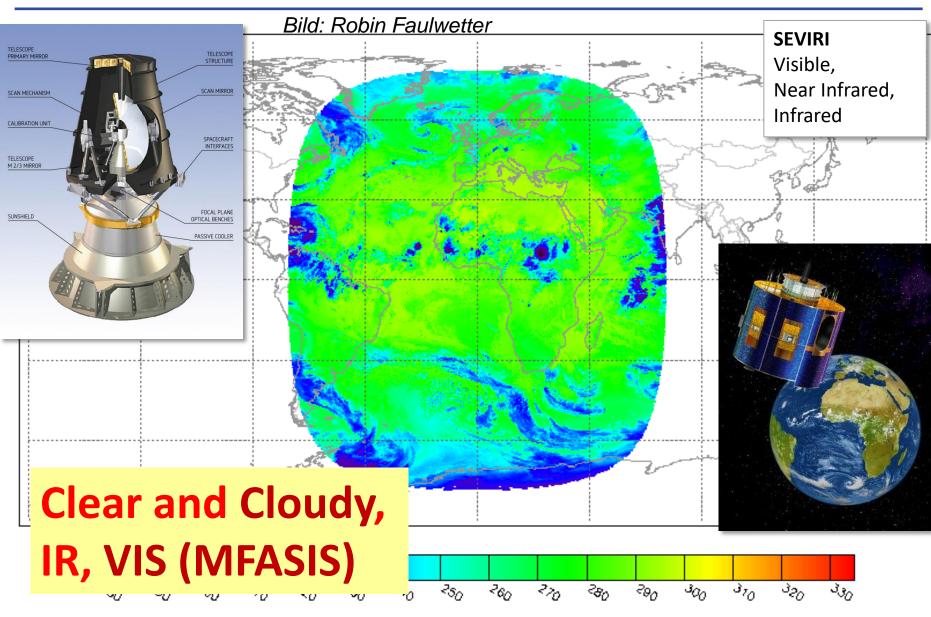
Deutscher Wetterdienst



Observations: Geostationary Satellites

Deutscher Wetterdienst

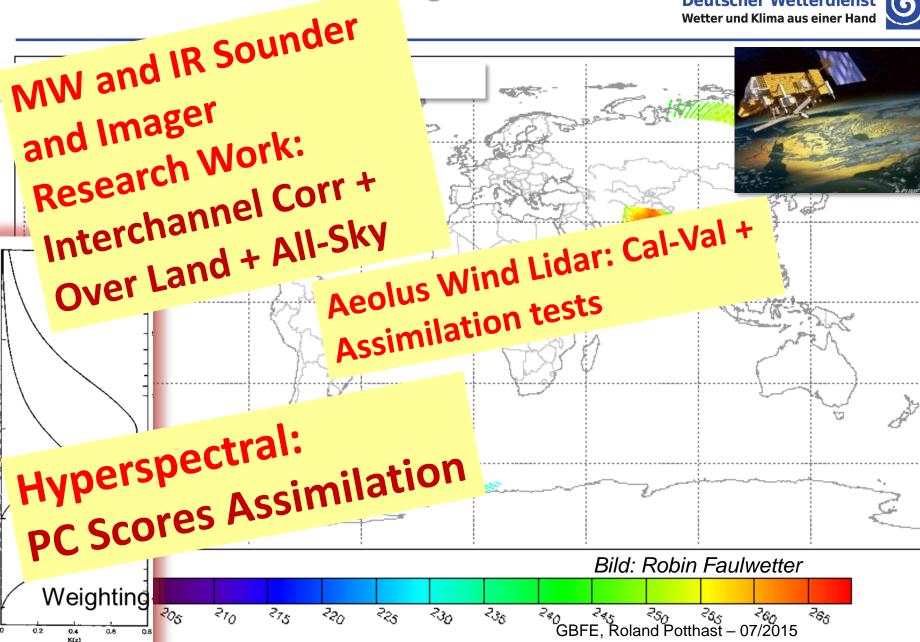
Wetter und Klima aus einer Hand



Observations: Polar Orbiting Satellites

Weighting function

Wetter und Klima aus einer Hand

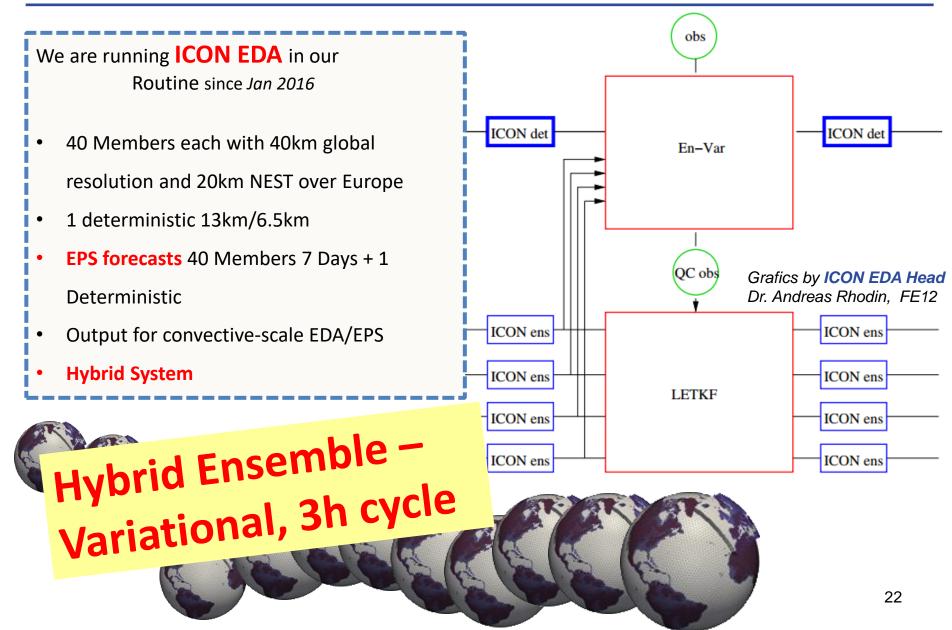


Ensemble Datenassimilation EnVar

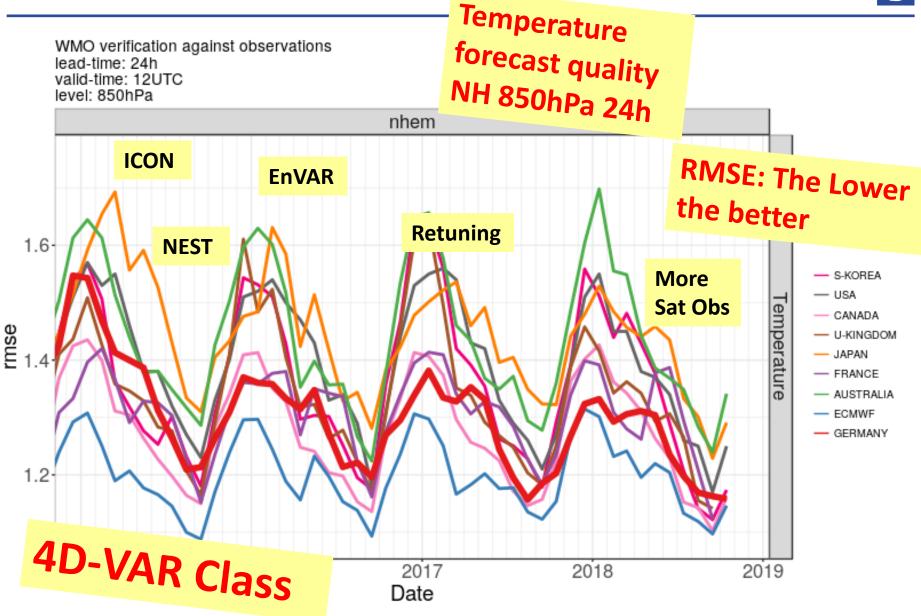
Deutscher Wetterdienst

Wetter und Klima aus einer Hand

Operational since January 2016



Deutscher Wetterdienst Wetter und Klima aus einer Hand



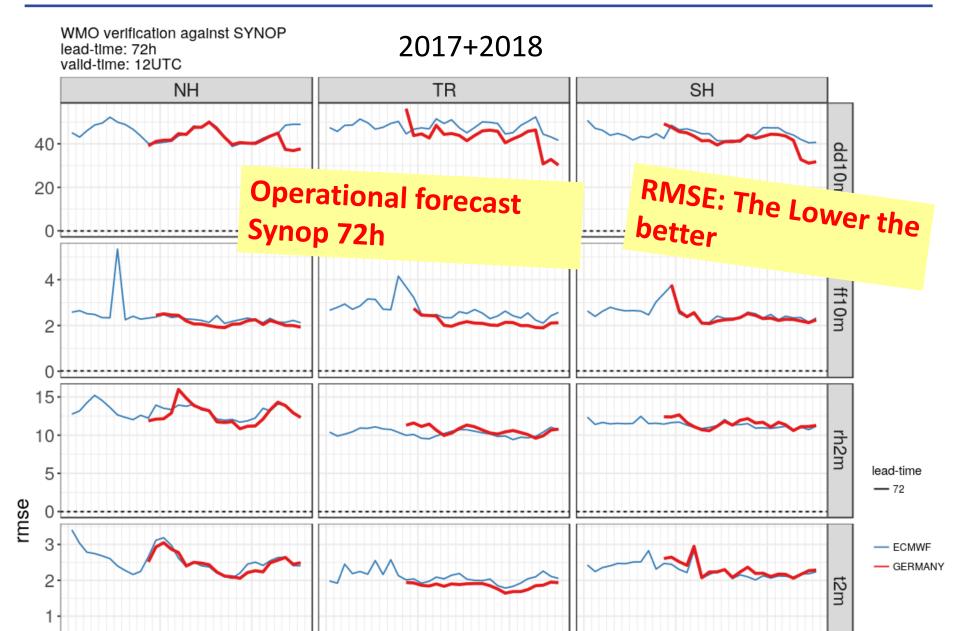
Roland Potthast

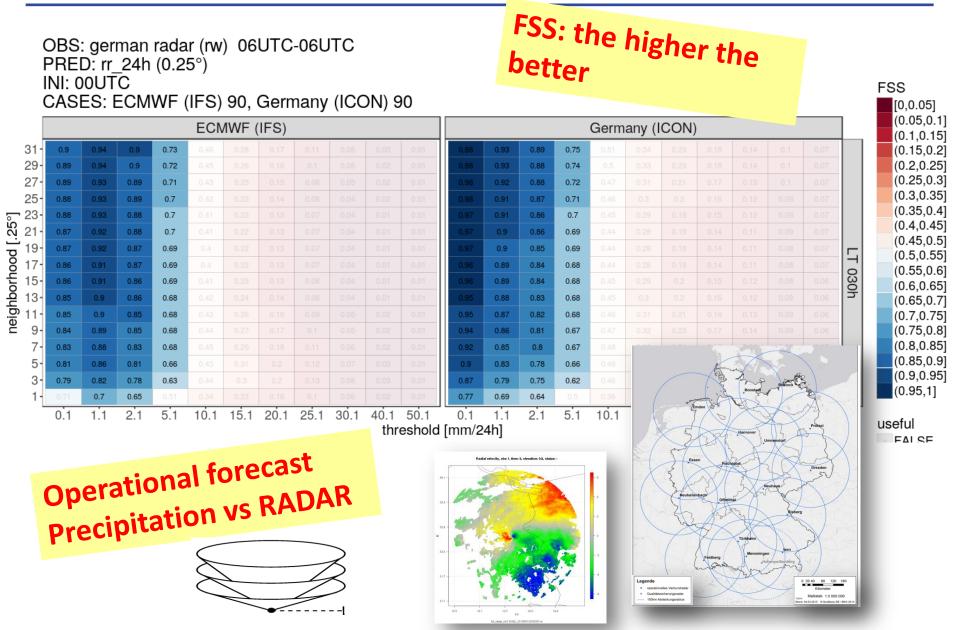
Deutscher Wetterdienst Wetter und Klima aus einer Hand

Temperature WMO verification against observations forecast quality, lead-time: 72h valid-time: 12UTC NH 500hPa 72h level: 500hPa nhem **ICON** 2.00 **EnVAR RMSE: The Lower** the better Retuning **NEST** 1.75 More S-KOREA — USA Sat Obs emperature — CANADA rmse — U-KINGDOM — JAPAN — FRANCE 1.50 AUSTRALIA — ECMWF — GERMANY 1.25 2015 2016 2017 2018 2019 Date

Roland Potthast

Deutscher Wetterdienst Wetter und Klima aus einer Hand





Deutscher Wetterdienst Wetter und Klima aus einer Hand

Why and Where Distributions, Risk and Uncertainty?

- 2. Discussion of Ensemble (+Particle) Methods
- 3. Framework Global+LAM+LES Model: ICON and

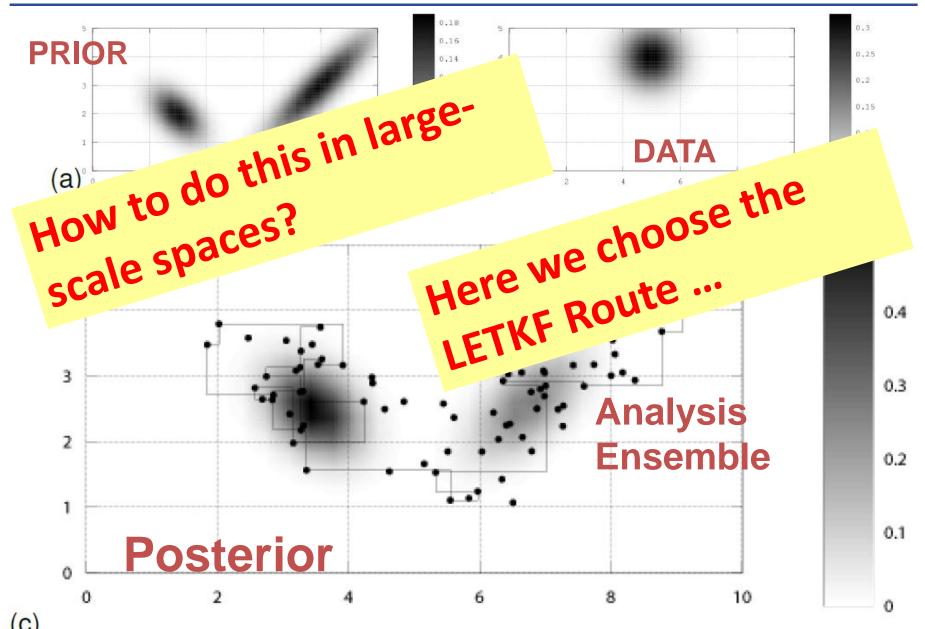
ICON-EPS and the LEKTF+EnVAR/KENDA System

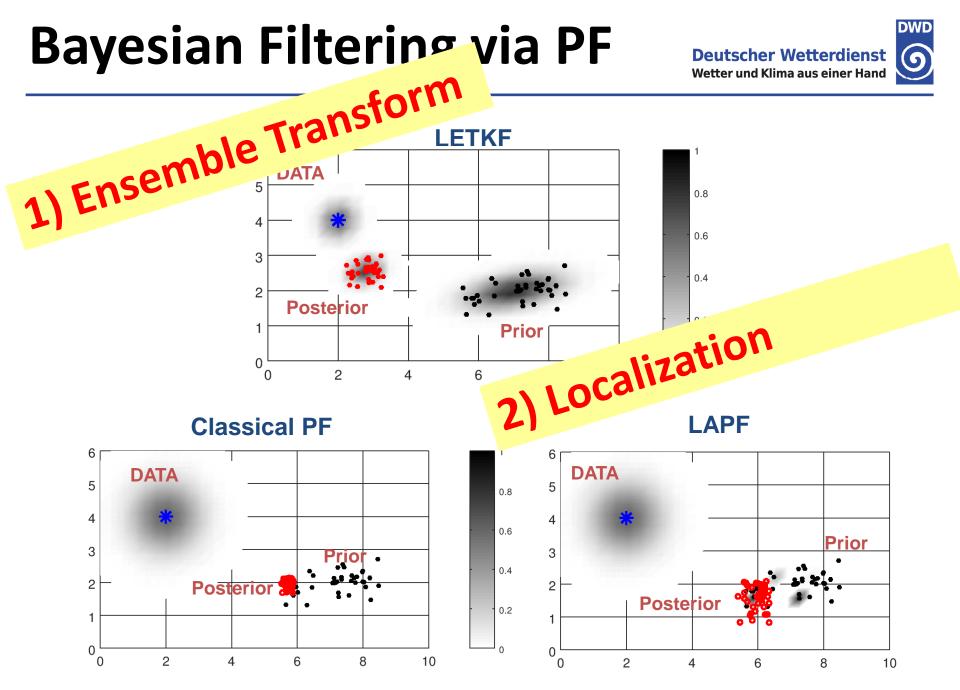
4. LAPF & LMCPF Particle Filters for Non-Gaussian Distributions – Details and Results

BAYES Data Assimilation

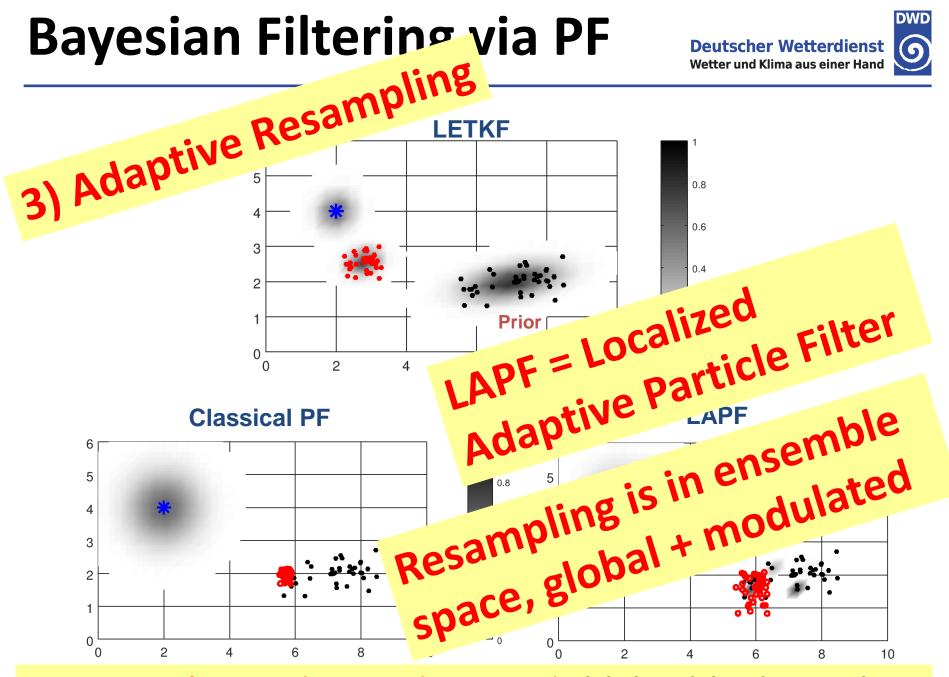
Deutscher Wetterdienst

Wetter und Klima aus einer Hand





April 2018



LAPF = Transform, Localization, Adaptivity with global modulated Resampling

 Bayes formula to calculate new analysis distribution $p_k^{(a)}(x) := p(x|y_k) = c p(y_k|x) p_k^{(b)}(x),$ $x \in \mathbb{R}^n$

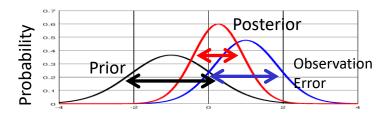
c is a normalization factor: $\int_{x} p_{k}^{(a)}(x) dx = 1$

Classical PF Approach

• To carry out the analysis step at time t_k **aposteriori weights** $p_k^{(a)}$ are calculated

$$p_{k,l}^{(a)} = c \ e^{-\frac{1}{2}(y - Hx^{(l)})^{T}R^{-1}(y - Hx^{(l)})}$$

c is chosen such that $\sum_{l=1}^{L} p_{k,l}^{(a)} = L$



• Accumulated weights w_{ac} are defined:

$$w_{ac_0} = 0$$

 $w_{ac_i} = w_{ac_{i-1}} + p_i^a, \qquad i = 1, ..., L$

where L denotes the ensemble size

• Drawing $r_i \sim U([0,1]), j = 1, ..., L$, set $R_i = j - 1 + r_i$ and define transform matrix W for the particles by:

$$W_{i,j} = \begin{cases} 1 & if \ R_j \in (w_{ac_{i-1}}, w_{ac_i}], \\ 0 & otherwise, \end{cases}$$

i, j = 1, ..., L with $W \in \mathbb{R}^{L \times L}$, (s, t] denotes the interval of values $s < \eta \leq t$. Resampling

Adaptivity based on o-b statistics

 Based on the adaptive multiplicative inflation factor determined by the LETKF

$$\rho = \frac{\mathrm{E}\left[\boldsymbol{d}_{o-b}^{T}\boldsymbol{d}_{o-b}\right] - \mathrm{Tr}(\mathbf{R})}{\mathrm{Tr}(\boldsymbol{H}\boldsymbol{P}^{b}\boldsymbol{H}^{T})}$$

 $E\left[\boldsymbol{d}_{o-h}^{T}\boldsymbol{d}_{o-h}\right] = Tr(\mathbf{R}) + \rho Tr(\boldsymbol{H}\boldsymbol{P}^{b}\boldsymbol{H}^{T})$ from

• Weighting factor α has been chosen, due to the small ensemble size (L = 40)

$$\rho_k = \alpha \tilde{\rho}_k + (1 - \alpha) \rho_{k-1}$$

• Pertubation factor σ is used to add spread to the system

$$\sigma = \begin{cases} c_0, & \rho < \rho^{(0)} \\ c_0 + (c_1 - c_0) * \frac{\rho - \rho^{(0)}}{\rho^{(1)} - \rho^{(0)}}, & \rho^{(0)} \le \rho \le \rho^{(1)} \\ c_1, & \rho > \rho^{(1)} \end{cases}$$

where $c_0 = 0.02$, $c_1 = 0.2$,

$$\rho^{(0)} = 1.0 \text{ and } \rho^{(1)} = 1.4, \text{ with}$$

$$\sigma = c_1 \text{ if } \rho \ge \rho^{(1)} \text{ and}$$

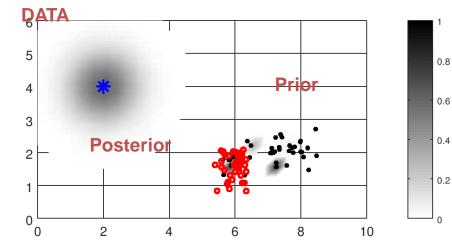
$$\sigma = c_0 \text{ if } \rho \le \rho^{(0)}$$

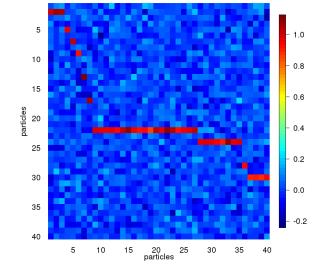
Enforce the desired spread!

Weights W are modified by applying the pertubation factor σ

$$W = W + R_{nd} * \sigma$$

with R_{nd} normally distributed random numbers



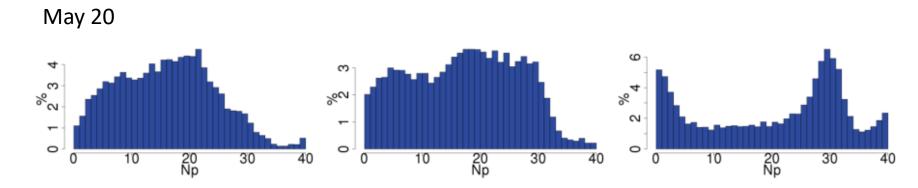


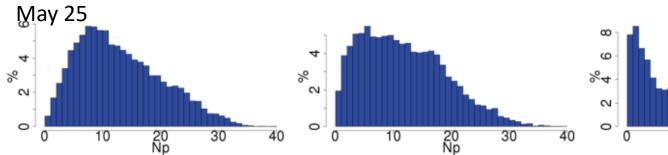
An example for a W-Matrix after applying σ determined with for 60% **the for 60% the for 60%**

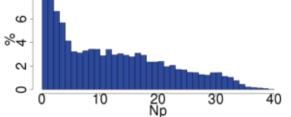
Fourth Step: Gaussian Resampling

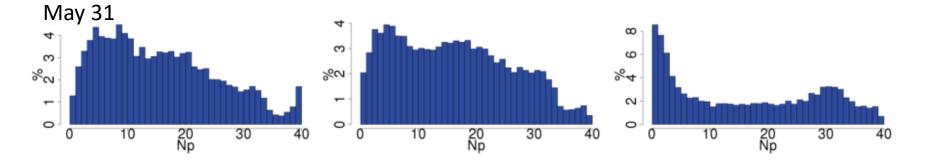
Effective Ensemble Size Distributions Deutscher Wetterdienst

Wetter und Klima aus einer Hand





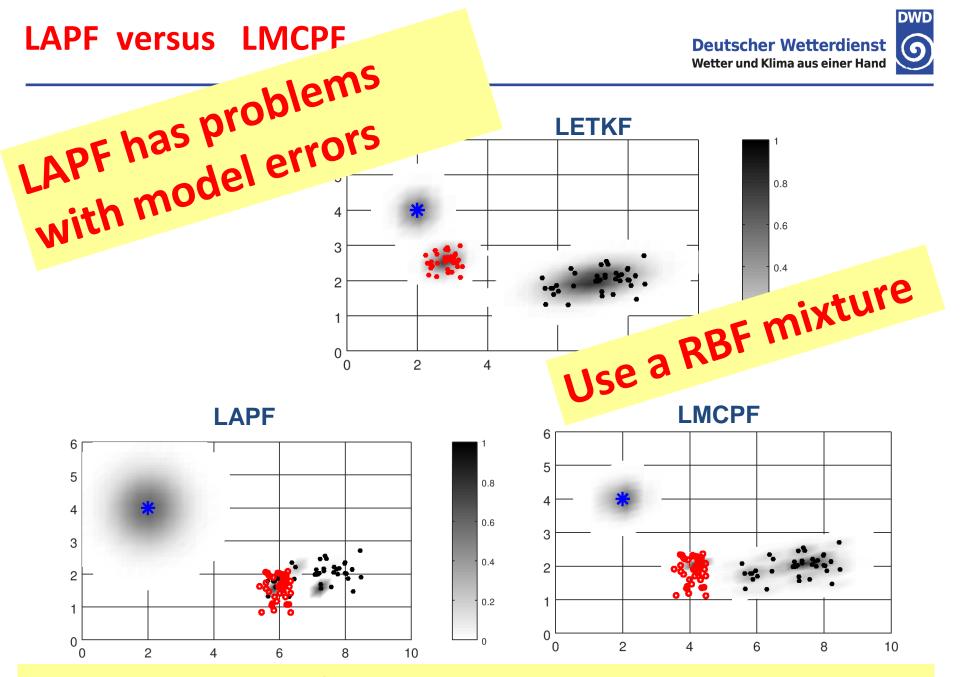




100 hPa

500 hPa

1000 hPa



LMCPF = Transform, Localization, RBF mixture, Adaptivity

Kalman Filter

$$x^{(a)} = x^{(b)} + BH^T (R + HBH^T)^{-1} (y - Hx^{(b)})$$

$$K = BH^T (R + HBH^T)^{-1} \qquad \tilde{B} = (I - KH)B$$

Ensemble B Estimator

$$\bar{x} := \frac{1}{L} \sum_{\ell=1}^{L} x^{(\ell)}$$

$$B = \frac{1}{L-1}XX^T$$

 $X = (x^{(1)} - \bar{x}, ..., x^{(L)} - \bar{x}) \in \mathbb{R}^{n \times L}.$

LETKF/LMCPF Basics: B Posterior De Wet

$$\tilde{B} = (I - KH)B \qquad Y := HX$$

$$= (I - BH^{T}(R + HBH^{T})^{-1}H)B$$

$$= (I - \gamma X X^{T}H^{T}(R + \gamma HX X^{T}H^{T})^{-1}H)\gamma XX^{T}$$

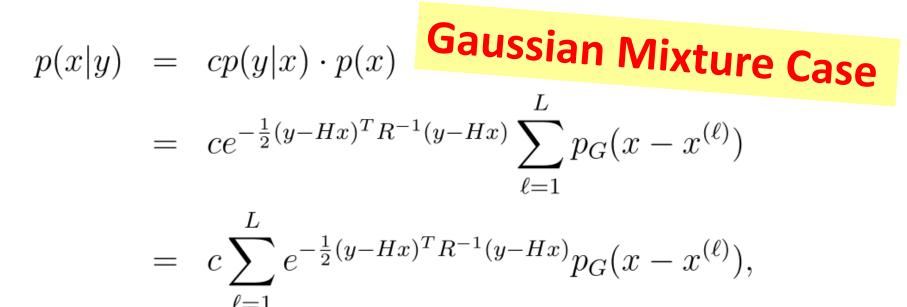
$$= X (I - \gamma Y^{T}(R + \gamma YY^{T})^{-1}Y)\gamma X^{T}$$

$$= X (I - \gamma (I + \gamma Y^{T}R^{-1}Y)^{-1}Y^{T}R^{-1}Y)\gamma X^{T}$$

$$= X (I + \gamma Y^{T}R^{-1}Y)^{-1}(I + \gamma Y^{T}R^{-1}Y) - \gamma Y^{T}R^{-1}Y)\gamma X^{T}$$

$$= X (I + \gamma Y^{T}R^{-1}Y)^{-1}\gamma X^{T}$$

$$= X (\frac{1}{\gamma}I + Y^{T}R^{-1}Y)^{-1}X^{T}$$
RBF Basis Function
in Ensemble Space



$$p_G(x - x^{(\ell)}) = \tilde{c}e^{-\frac{1}{2}(x - x^{(\ell)})^T G^{-1}(x - x^{(\ell)})}$$

Explicit Calculations possible for each term We need a selection based on relative weights!

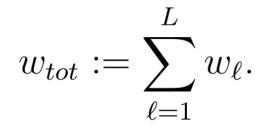
$$w_{\ell} := e^{-\frac{1}{2}(y - Hx^{(\ell)})^T R^{-1}(y - Hx^{(\ell)})}, \quad \ell = 1, \dots, L$$

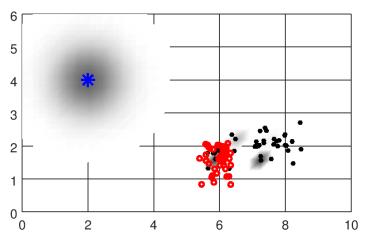
0.8

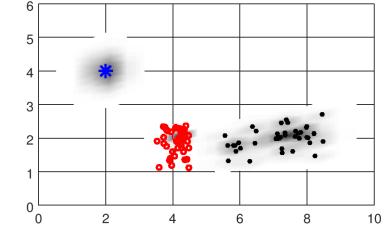
0.6

0.4

0.2







Projection onto Ensemble Space

Abbreviating $A := \mathbf{Y}^T \mathbf{R}^{-1} \mathbf{Y}$ and $C := A^{-1} \mathbf{Y}^T \mathbf{R}^{-1} (\mathbf{y}^o - \overline{\mathbf{y}}^b)$

Projection Operator

$$P(\mathbf{y}^o - \overline{\mathbf{y}}^b) = \mathbf{Y}(\mathbf{Y}^T \mathbf{R}^{-1} \mathbf{Y})^{-1} \mathbf{Y}^T \mathbf{R}^{-1} (\mathbf{y}^o - \overline{\mathbf{y}}^b),$$

Projected discrepancy

$$P(\mathbf{y}^o - H\mathbf{x}^{(\ell)}) = \mathbf{Y}A^{-1}\mathbf{Y}^T\mathbf{R}^{-1}((\mathbf{y}^o - \overline{\mathbf{y}}^b) - \mathbf{Y}e_\ell)$$

Exponent

$$= \mathbf{Y}(C - e_{\ell}), \ \ell = 1, ..., L.$$

$$P(\mathbf{y}^{o} - H\mathbf{x}^{(\ell)})]^{T}\mathbf{R}^{-1}P(\mathbf{y}^{o} - H\mathbf{x}^{(\ell)}) = [C - e_{\ell}]^{T}A[C - e_{\ell}], \ \ell = 1, ..., L,$$

Weight

$$w_{k,\ell} = ce^{-\frac{1}{2}[C-e_{\ell}]^T A[C-e_{\ell}]}, \ \ell = 1,...,L.$$

Classical versus projected weights

$$\begin{split} w_{k,\ell}^{classical} &= e^{-\frac{1}{2}[(\mathbf{y}^{o} - H\mathbf{x}^{(\ell)})]^{T}\mathbf{R}^{-1}[(\mathbf{y}^{o} - H\mathbf{x}^{(\ell)})]} \\ &= e^{-\frac{1}{2}[(P+(I-P))(\mathbf{y}^{o} - H\mathbf{x}^{(\ell)})]^{T}\mathbf{R}^{-1}[(P+(I-P))(\mathbf{y}^{o} - H\mathbf{x}^{(\ell)})]} \\ &= e^{-\frac{1}{2}[P(\mathbf{y}^{o} - H\mathbf{x}^{(\ell)})]^{T}\mathbf{R}^{-1}[P(\mathbf{y}^{o} - H\mathbf{x}^{(\ell)})]} \cdot \underbrace{e^{-\frac{1}{2}[(I-P)(\mathbf{y}^{o} - H\mathbf{x}^{(\ell)})]^{T}\mathbf{R}^{-1}[(I-P)(\mathbf{y}^{o} - H\mathbf{x}^{(\ell)})]}_{=\tilde{c}}}_{=\tilde{c}} \end{split}$$

Factor is a constant term, since we have

$$(I-P)(\mathbf{y}^o - Hx^{(\ell)}) = (I-P)(\mathbf{y}^o - \overline{\mathbf{y}}^b + \mathbf{Y}e_\ell)$$
$$= (I-P)(\mathbf{y}^o - \overline{\mathbf{y}}^b) - \underbrace{(I-P)\mathbf{Y}e_\ell}_{=0}.$$

Projected particle filter weights and classical particle filter weights are <u>equivalent theoretically</u>, but

numerically remove a very small common factor

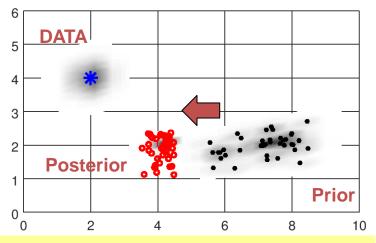
LMCPF = Local Markov Chain Particle Filter

Weights W are calculated by drawing from the posterior

 $W = W + A_{shift} * W + B_{post} * R_{nd} * \sigma$

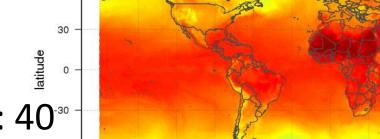
with R_{nd} normally distributed random numbers,

 A_{shift} and B_{post} calculated with Gaussian radial basis function (rbf) Approximation for prior density and observation error



✓ It is an **explicit calculation** of the **Bayes posterior** based on radial basis function approximation of the prior, with subsequent draws from that distribution in the MCMC sense.

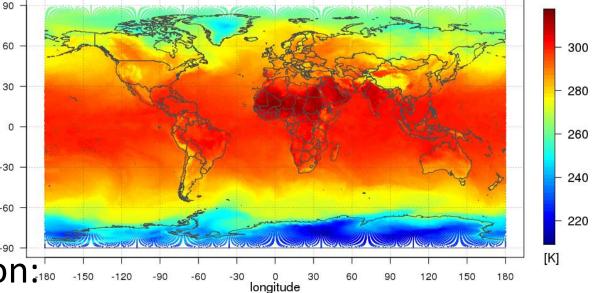
Large-Scale Experimental Set-up

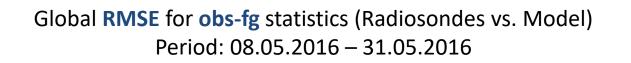


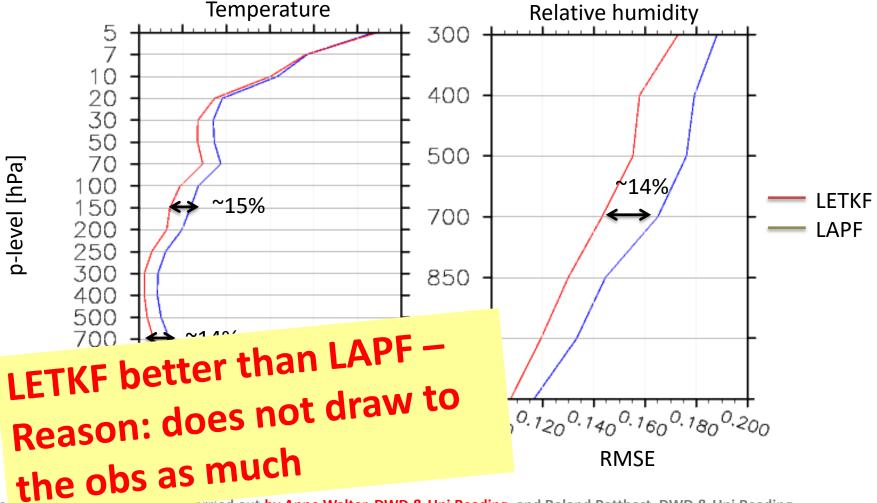
- Full ensemble: 40⁻³⁰ members
- Reduced resolution:
 - 26km deterministic
 - 52km ensembles
- Period: 01.05.2016 -31.05.2016

Experiments programmed and carried out by Anne Walter, DWD& Uni Reading, and **Roland Potthast, DWD& Uni Reading**

In Cooperation with Peter-Jan van Leeuwen, Uni Reading

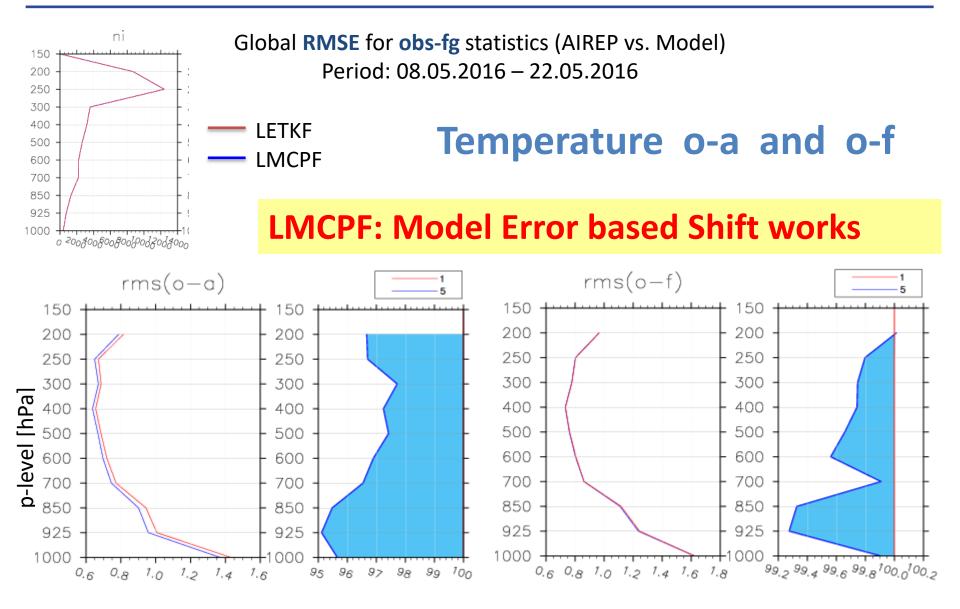






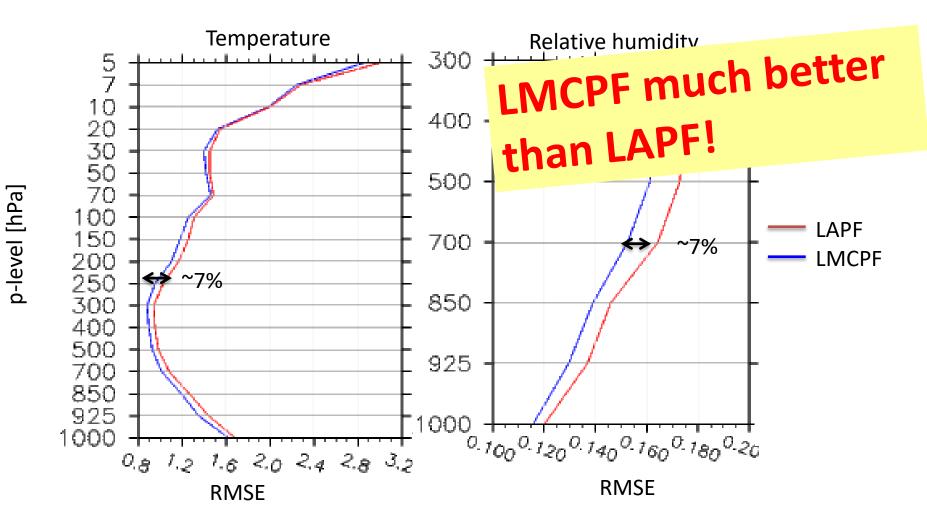
and carried out by Anne Walter, DWD & Uni Reading, and Roland Potthast, DWD & Uni Reading

LMCPF Scores vs LETKF



Experiments programmed and carried out by Anne Walter, DWD & Uni Reading, and Roland Potthast, DWD & Uni Reading

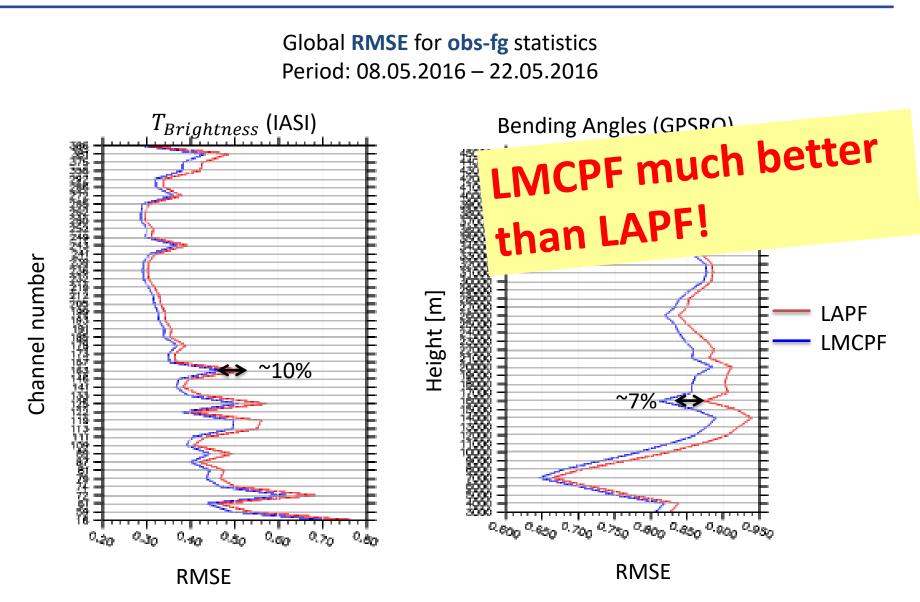
Global **RMSE** for **obs-fg** statistics (Radiosondes vs. Model) Period: 08.05.2016 – 22.05.2016



Experiments programmed and carried out by Anne Walter, DWD & Uni Reading, and Roland Potthast, DWD & Uni Reading

LMCPF Scores vs LAPF

Deutscher Wetterdienst Wetter und Klima aus einer Hand

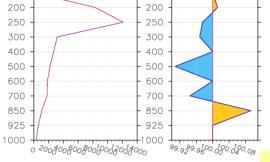


Experiments programmed and carried out by Anne Walter, DWD & Uni Reading, and Roland Potthast, DWD & Uni Reading

New LMCPF Scores vs LETKF

-1 -5 Deutscher Wetterdienst Wetter und Klima aus einer Hand

WIND o-a and o-f

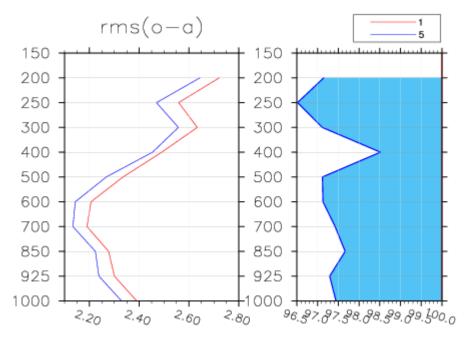


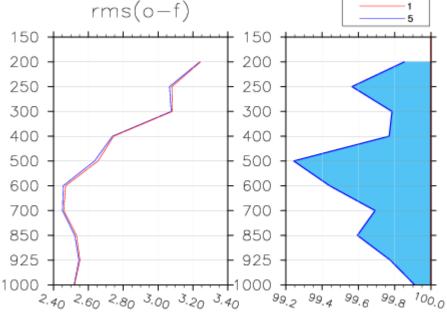
150

ni

150

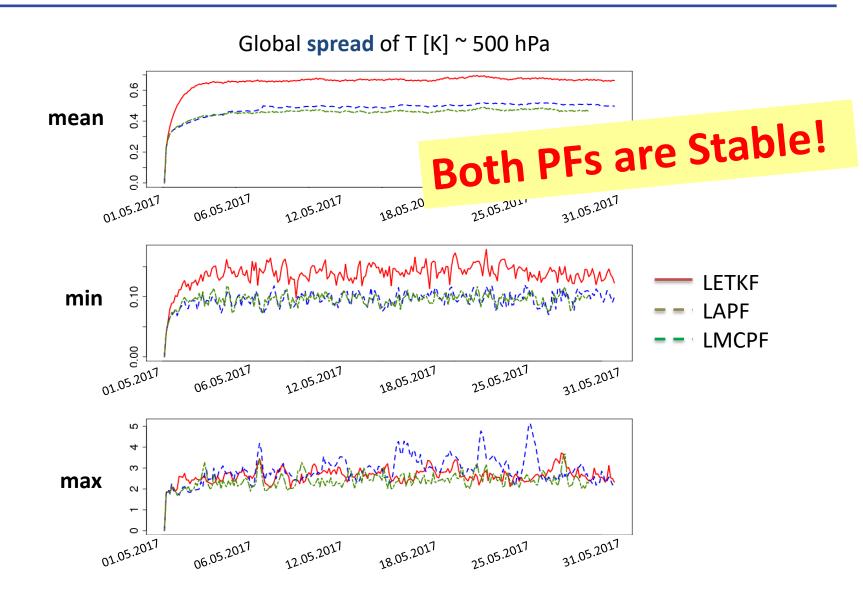
LMCPF: Model Error based Shift works





LAPF Spread vs LMCPF & LETKF

Deutscher Wetterdienst Wetter und Klima aus einer Hand



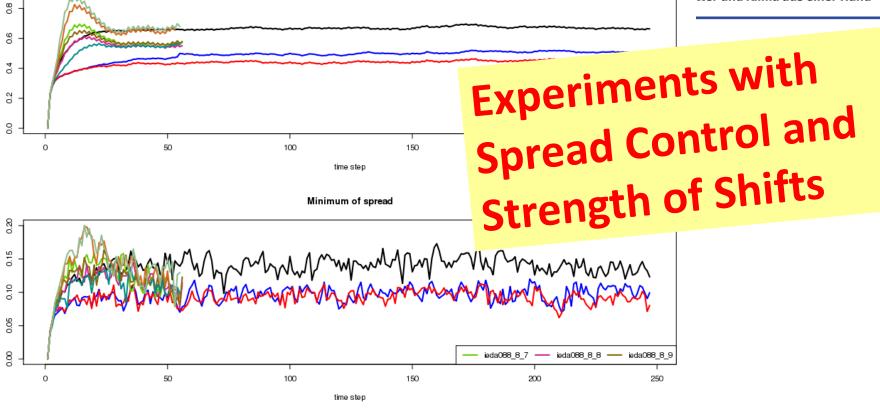
Experiments programmed and carried out by Anne Walter, DWD & Uni Reading, and Roland Potthast, DWD & Uni Reading

Statistics for spread at level 64 for variable T

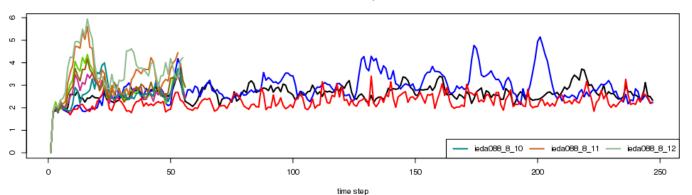
Mean of spread

utscher Wetterdienst

tter und Klima aus einer Hand



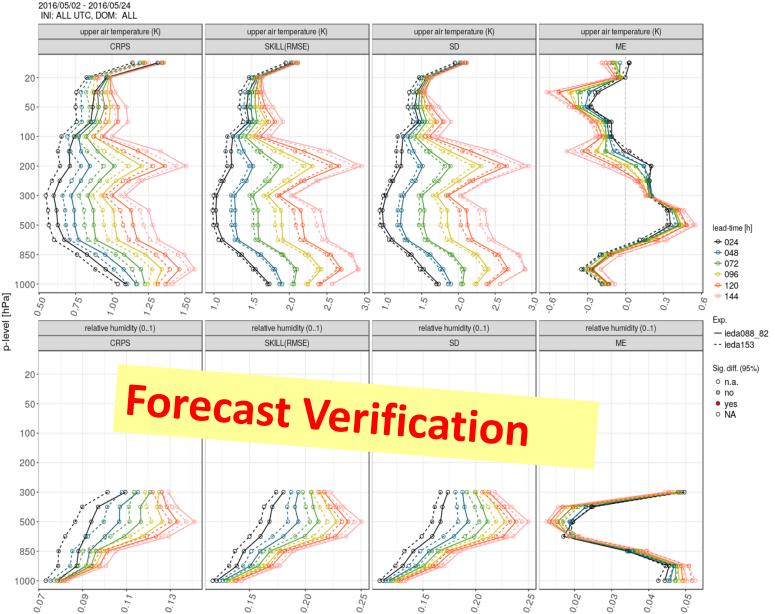
Maximum of spread



LMCPF Scores vs LETKF

Deutscher Wetterdienst a aus einer Hand

DWD



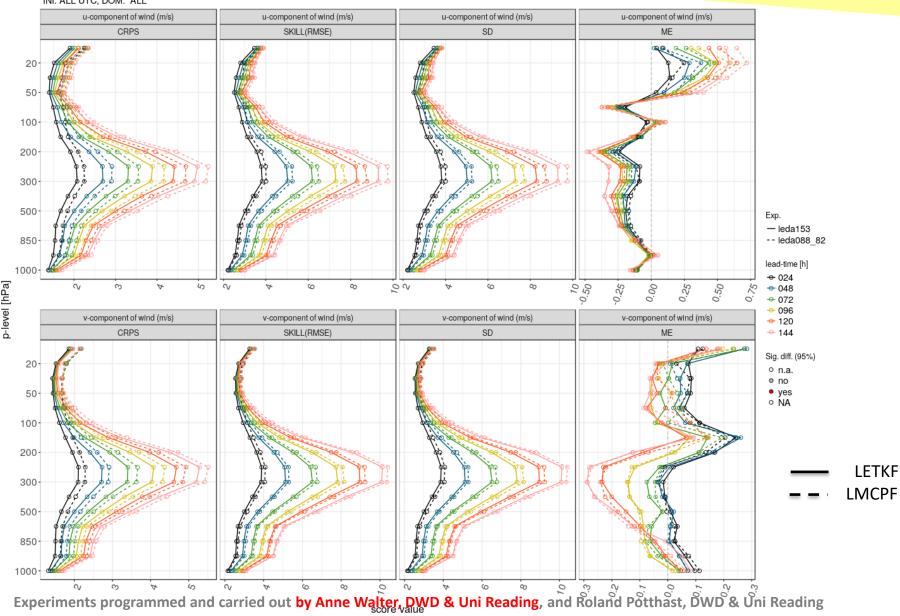
Experiments programmed and carried out by Anne Walter, DWD & Uni Reading, and Roland Potthast, DWD & Uni Reading

score value

LMCPF Scores vs LETKF

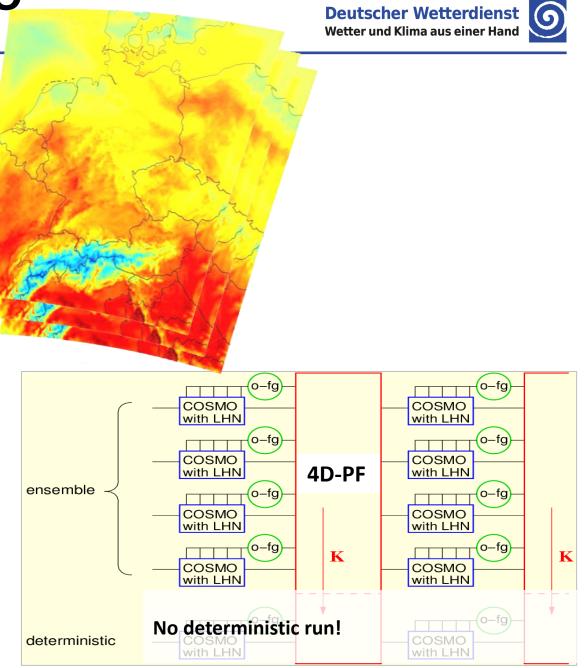
Forecast Verification

2016/05/02 - 2016/05/24 INI: ALL UTC, DOM: ALL

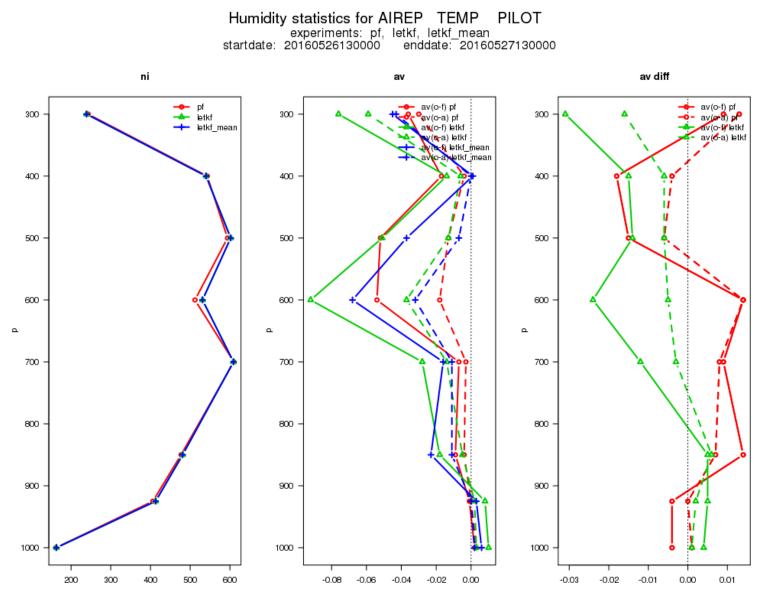


4D-Particle Filter for Convection Permitting Model

COSMO-DE Resolution 2.8km **Central Europe**

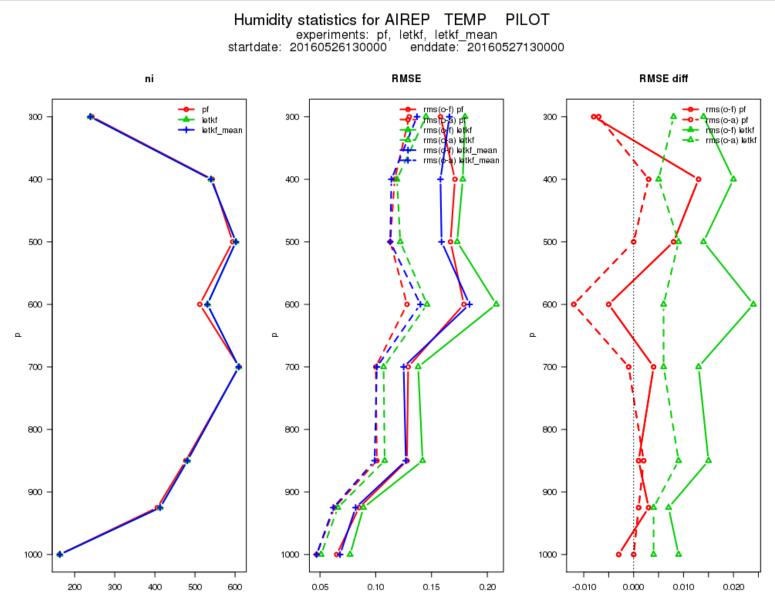


DWD

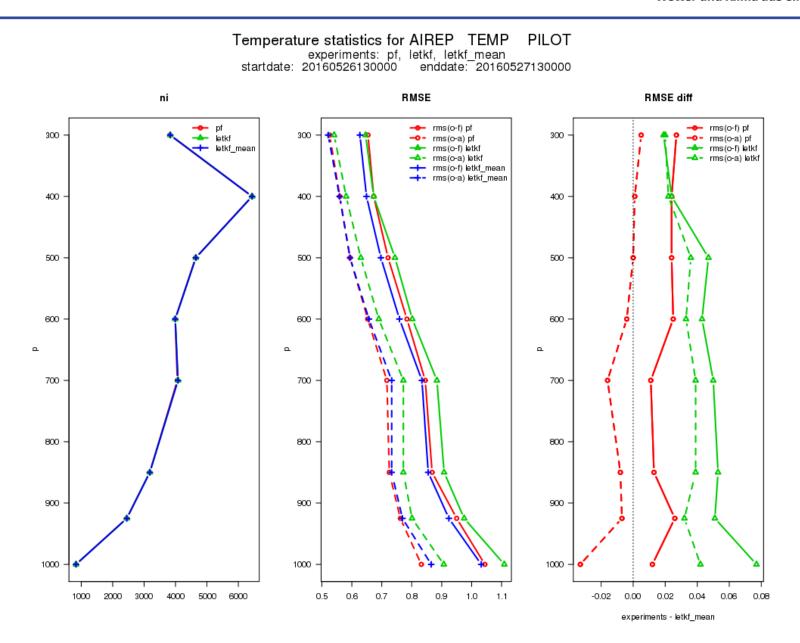


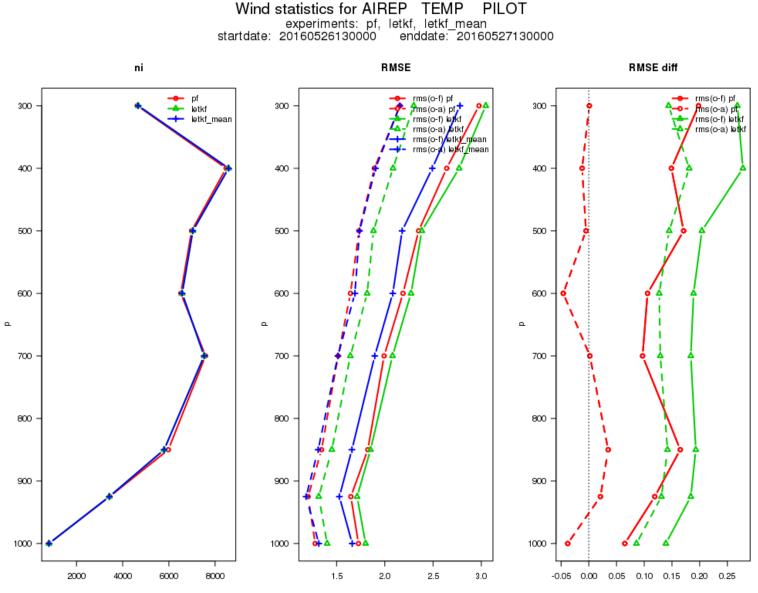
experiments - letkf_mean

DWD



experiments - letkf_mean

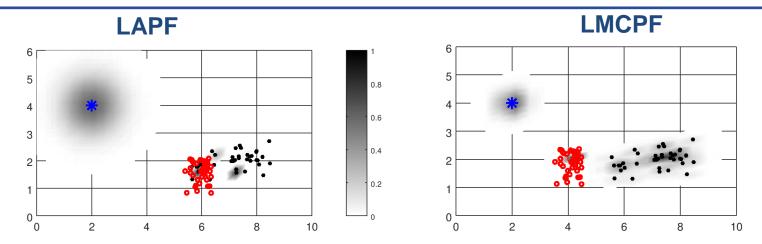




experiments - letkf_mean

Summary LAPF and LMCPF

Deutscher Wetterdienst Wetter und Klima aus einer Hand



- LAPF and LMCPF are implemented in an operational NWP system: Globally + mesoscale + convective scale (KENDA)
- Both Particle Filters are able to provide reasonable atmospheric analysis in a large-scale (high-dimensional) environment and are running stably over a period of one month
- The LMCPF outperforms the LAPF, both Particle Filters are not far behind the operational LETKF, LMCPF starting to be comparable

Both Particle Filters are showing promising results; further tuning and development is in progress.

Many Thanks!

Inverse Modeling

An introduction to the theory and methods of inverse problems and data assimilation

Gen Nakamura Roland Potthast

