
Heinz-Werner Bitzer, Annika Schomburg, Silke May, Marc Pondrom, Kristin 
Raykova, Thomas Rösch, Michael Bender, Christian Welzbacher, Lilo Bach, Lisa 
Neef, Zoi Paschalidi, Walter Acevedo, Axel Hutt, Daniel Egerer, Gerhard Paul, Ana 
Fernandez, Stefan Declair 

Ensemble Data Assimilation and  

Particle Filters for NWP 

                  

Kobe November 2018 

Roland Potthast 
NWP @ DWD    & 

University of Reading 

With the help of 
many people, in 
particular: 
 
Anne Walter, 
Andreas Rhodin 
Harald Anlauf,  
Christina Köpken, 
Robin Faulwetter, 
Olaf Stiller, 
Alexander Cress, 
Martin Lange, 
Stefanie Hollborn, 
E. Bauernschubert,  
Christoph Schraff, 
Hendrik Reich,  
Klaus Stephan  
Ulrich Blahak 

Partners include: 
P.-J van Leeuwen 
Sebastian Reich 
Dan Crisan 
H.R. Künsch 
Amos Lawless 
S. Dance 
Nancy Nichols 



1. Why and Where Distributions, Risk and 

Uncertainty? 

2. Discussion of Ensemble (+Particle) Methods 

3. Framework Global+LAM+LES Model: ICON and 

ICON-EPS and the LEKTF+EnVAR/KENDA System 

4. LAPF & LMCPF Particle Filters for Non-Gaussian 

Distributions – Details and Results  

 

Contents 



Extreme Weather Events are 
triggered by deep convection and 
threaten lifes, infrastructure and 
economy!  

Lightning, Gusts, Hail and strong 
precipitation or tornados impact 
the life of individuals ans the 
society.  

Thunderstorms with the following properties:s Level 

Strong Gusts (Bft. 7) Moderate 

Storm Force Gusts (Bft. 8-10) Strong 

Heavy Rainfall (10-25mm/h) Strong 

Storm Force Gusts, Heavy Rainfall Strong 

Storm Force Gusts, Heavy Rainfall, Hail Strong 

Hurricane Force Gusts (Bft. 11-12) Severe 

Storm Force Gusts, Very Heavy Rain(25-50mm/h) Severe 

Storm Force Gusts, Very Heavy Rain, Hail Severe 

Hurricane Force Gusts, Very Heavy Rain, Hail Severe 

National Task: Warn 
and Protect 

Why Distributions , Risk, Uncertainty? 

NOW, 5min, 30min,  
… 1h, 2h, 6h, 24h, 72h, … 



Why Distributions , Risk, Uncertainty? 



Bildquelle: https://de.wikipedia.org/wiki/%C3%9Cbertragungsnetzbetreiber 

Bildquelle: http://www.amprion.net/pressemitteilung-76 

Renawable Energy Forecasting 

Why Distributions , Risk, Uncertainty? 



Medium Term 
NWP 

-> 4-14 days 

Nowcasting 
NWC 

-> 1-2 h 

Framework Numerical Weather Prediction  

Short-Range NWP  
SRNWP 

-> 0-3 days 

Seasonal Prediction 
-> 12 month 

Climate Projection 
-> 10-100 years 
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40 Countries 

Cosmo User Seminar + Training 
Course + Symposium 
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 Why variational Data Assimilation (3D/4D-VAR)? 
 

 

 

 

 

 

 Why Ensemble Data Assimilation (EDA)? 
 

 Why Hybrid Methods? (3D/4D-EnVAR) 
 

 Why Particle Filters? (PF,GPF,ETPF,LAPF,LMCPF) 
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Data Assimilation Methods 

 

20 years 4D-VAR at ECMWF 



The minimization of 

 

 

leads to the analysis 

 

Variational Analysis (3D/4D-VAR) 

𝑱 𝒙 =  𝒙 − 𝒙𝒃 2
 + 𝒚 − 𝑯𝒙 2 

 B-1 R-1 

𝒙𝒂 = 𝒙𝒃 +𝑩 𝑯𝑻  𝑹 + 𝑯 𝑩 𝑯𝑻 −𝟏
(𝒚 − 𝑯𝒙𝒃) 

This is the mother of all data assimilation formulas 

Obs Operator 

Recall where we came from … 



Maximum Likelyhood Estimator = 
Minimization of Functional = 3/4DVar 

Stochastic View  Minimization 

𝑝 𝑥 =  𝑒−
1

2
 𝑥−𝑥𝑏

𝑇
𝐵−1(𝑥−𝑥𝑏)   Gaussian Prior 

𝑝 𝑦|𝑥 =  𝑒−
1

2
 𝑦−𝐻𝑥 𝑇𝑅−1(𝑦−𝐻𝑥)   Gaussian Data Error 

 Gaussian Posterior 

𝑝 𝑥|𝑦 = 𝑐 𝑒
−
1
2
 𝑥−𝑥𝑏

𝑇
𝐵−1 𝑥−𝑥𝑏 + 𝑦−𝐻𝑥 𝑇𝑅−1(𝑦−𝐻𝑥)
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Prior Observation 
Error 

Posterior 
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Prior Observation 
Error 

Posterior 

Kalman Filter & Uncertainty Estimation 

Basic Idea of the Kalman Filter 
 

 Sequentiel Assimilation of Data 
 Do not only adapt the mean, but also the  

Covariance B (Uncertainty, Gaussian Case) 

 
 

Prior 

Obs 

Posterior 

But: Limited to the 
Gaussian Case 



 Kalman Filter needs B update => 
expensive! 

 Estimate B based on an ensemble of 
forecasted states (stochastic estimator).  

EDA: Ensemble Kalman Filter (EnKF) 

Needs Localization 

B will be flow-dependent and variable, depending on the 
model dynamics and on the observations 

Localized: LETKF 



Variable x1 

Variable x2 

mean 

mean 

variance 

variance 

covariance 

Using Perturbations, Climatological or Dynamical 
Covariances,  and the Particle Filter 



Variable x1 

Variable x2 

mean 

mean 

variance 

variance 

Dynamical 
covariance 

EnKF  

3DVAR   

truth 

Using Perturbations, Climatological or Dynamical 
Covariances,  and the Particle Filter 

Particle Filter  

truth 

measurement 

Climatological 
covariance 
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Global NWP Modelling: Det + EPS – 
Reality + Goals 

 

0)(

0)(













































v
v

vpdh

vpd
n

t
n

v
t

v
t

g
z

c
z

w
wwv

t

w

n
c

z

v
w

n

K
vf

t

v



















1) ICON Model 13km  
2) Nest over Europe 

(6.5km; 2-way)  
3) ICON-LAM D2  
4) Nest over Germany 

(1km; 2-way) D1  
5) NWC Ensemble 



Full Observation System 

Radiosonde 

 

 

 

 

Meteor. 

Observatorium 

Lindenberg 

Wind-Profiler 

1. Doppler-LIDAR 
(Wind) 

2. DIAL 
(Humidity) 

3. Raman LIDAR 
(Temp+Hum) 

4. MWR 
(Temp+Hum) 

5. GPS STD 
(Hum) 

6. Cloud Radar 



Conventional Synop + Airplanes 



Observations: Geostationary Satellites  

SEVIRI  
Visible,  
Near Infrared,  
Infrared 

Bild: Robin Faulwetter 

Clear and Cloudy, 
IR, VIS (MFASIS) 



Radianzen von polar umlaufenden Satelliten 

GBFE, Roland Potthast – 07/2015 

Bild: Robin Faulwetter 

Observations: Polar Orbiting Satellites  
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Ensemble Datenassimilation EnVar 

We are running ICON EDA in our  

 Routine since Jan 2016 

 

• 40 Members each with 40km global 

resolution and 20km NEST over Europe 

• 1 deterministic 13km/6.5km 

• EPS forecasts 40 Members 7 Days + 1 

Deterministic 

• Output for convective-scale EDA/EPS 

• Hybrid System  

Grafics by ICON EDA Head 

Dr. Andreas Rhodin,  FE12 

Operational since January 2016 



Hybrid Methods: EnVAR Scores 

Roland Potthast 

ICON 
EnVAR 

More 
Sat Obs 

NEST 
Retuning 



Roland Potthast 

Hybrid Methods: EnVAR Scores 

ICON 
EnVAR 

More 
Sat Obs 

NEST 
Retuning 



 

Hybrid Methods: EnVAR Scores 

2017+2018 



Hybrid Methods: EnVAR Scores 
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PRIOR 

DATA 

Posterior 

Analysis 

Ensemble 

BAYES Data Assimilation 



Bayesian Filtering via PF 

April 2018 

LETKF 

Classical PF 

DATA 

Prior 

Posterior 

DATA 

Prior 

Posterior 

LAPF 

DATA 

Prior 

Posterior 



Prior 

Bayesian Filtering via PF 

LETKF 

Classical PF LAPF 

LAPF = Transform, Localization, Adaptivity with global modulated Resampling 



 

• Bayes formula to calculate new analysis distribution 
 

𝑝𝑘
𝑎 𝑥 := 𝑝 𝑥 𝑦𝑘 = 𝑐 𝑝 𝑦𝑘 𝑥 𝑝𝑘

𝑏 𝑥 ,  𝑥 ∈ ℝ𝑛 

    𝑐 is a normalization factor:  𝑝𝑘
𝑎

𝑋
𝑥 𝑑𝑥 = 1 

 

 
• To carry out the analysis step at time 𝑡𝑘  

aposteriori weights 𝑝𝑘
𝑎  are calculated 

 

𝑝𝑘,𝑙
(𝑎)

= 𝑐 𝑒−
1
2 𝑦−𝐻𝑥 𝑙 𝑇

𝑅−1(𝑦−𝐻𝑥 𝑙 ) 
 

𝑐 is chosen such that  𝑝𝑘,𝑙
(𝑎)

= 𝐿𝐿
𝑙=1  

 

First Step: The Classical Particle Filter 

Classical PF Approach 
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Prior Observation 
Error 

Posterior 



Second Step: Classical Resampling 

 

• Accumulated weights 𝑤𝑎𝑐 are defined: 
𝑤𝑎𝑐0 = 0 

𝑤𝑎𝑐𝑖 = 𝑤𝑎𝑐𝑖−1
+ 𝑝𝑖

𝑎,      𝑖 = 1, … , 𝐿 

     where 𝐿 denotes the ensemble size 

 
 

• Drawing 𝑟𝑗~𝑈 0,1 , 𝑗 = 1,… , 𝐿, set 𝑅𝑗 = 𝑗 − 1 + 𝑟𝑗  and 
define transform matrix W for the particles by: 
 

𝑊𝑖,𝑗 =  
1 𝑖𝑓 𝑅𝑗 ∈ 𝑤𝑎𝑐𝑖−1

, 𝑤𝑎𝑐𝑖 ,

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 

     𝑖, 𝑗 = 1,… , 𝐿 with 𝑊 ∈ ℝ𝐿𝑥𝐿,  (𝑠, 𝑡] denotes the interval of  
     values 𝑠 < 𝜂 ≤ 𝑡. 

Resampling 



Third Step: Spread Control  

 
• Based on the adaptive multiplicative inflation factor 
𝝆 determined by the LETKF 
 

𝜌 =
Ε 𝒅𝑜−𝑏

𝑇 𝒅𝑜−𝑏 − Tr(𝐑)

Tr(𝑯𝑷𝑏𝑯𝑇)
 

 

from       Ε 𝒅𝑜−𝑏
𝑇 𝒅𝑜−𝑏  =  Tr(𝐑)  +  𝜌 Tr(𝑯𝑷𝑏𝑯𝑇) 

 
 
 
 

• Weighting factor 𝜶 has been chosen, due to the 
small ensemble size (𝐿 = 40) 

 

𝜌𝑘 = 𝛼𝜌 𝑘 + 1 − 𝛼 𝜌𝑘−1 

Adaptivity based on o-b statistics 



 

• Pertubation factor 𝜎 is used to add spread to the 
system 

𝜎 =

𝑐0, 𝜌 < 𝜌(0)

𝑐0 + 𝑐1 − 𝑐0 ∗
𝜌 − 𝜌(0)

𝜌(1) − 𝜌(0)
, 𝜌(0) ≤ 𝜌 ≤ 𝜌(1)

𝑐1, 𝜌 > 𝜌(1)

 

     where 𝑐0 = 0.02, 𝑐1 = 0.2,  

 𝜌(0) = 1.0 and 𝜌(1) = 1.4, with 
    𝜎 = 𝑐1if 𝜌 ≥ 𝜌(1) and  

 𝜎 = 𝑐0 if 𝜌 ≤ 𝜌(0) 

Third Step: Spread Control  



• Weights W are modified by 
applying the pertubation 
factor 𝝈 

𝑊 =  𝑊 + 𝑅𝑛𝑑  ∗ 𝜎 

with 𝑅𝑛𝑑 normally distributed 
random numbers 

Fourth Step: Gaussian Resampling  

An example for a W-
Matrix after applying 𝜎 
determined with the LAPF 
for  60°N/90°O ~500 hPa, 
26.05.2016 0 UTC is 
shown. 
 10 particles are chosen 

DATA 

Prior 

Posterior 



Effective Ensemble Size Distributions 

100 hPa                                         500 hPa                                          1000 hPa 

May 20 

May 25 

May 31 



LMCPF LAPF 

LETKF 

LAPF  versus   LMCPF 

LMCPF     =     Transform, Localization, RBF mixture, Adaptivity 



LMCPF Basics 

 Kalman Filter 

 Ensemble B Estimator 



LETKF/LMCPF Basics: B Posterior 



LMCPF Basics: Bayes Formula 



LMCPF Basics: Relative Weights 

LMCPF LAPF 



LAPF and LMCPF Weights 

Projection onto Ensemble Space 

Projection Operator 

Projected discrepancy 

Exponent 

Weight 



LAPF and LMCPF Weights 

Classical versus projected weights 

Factor is a constant term, since we have 

Projected particle filter weights and classical particle filter weights 
are equivalent theoretically, but  
  numerically remove a very small common factor 



• Weights W are calculated by drawing from the 
posterior 
𝑊 =  𝑊 + 𝐴𝑠ℎ𝑖𝑓𝑡 ∗ 𝑊 + 𝐵𝑝𝑜𝑠𝑡 ∗  𝑅𝑛𝑑  ∗ 𝜎 

 with 𝑅𝑛𝑑  normally distributed 
random numbers, 
𝐴𝑠ℎ𝑖𝑓𝑡 and 𝐵𝑝𝑜𝑠𝑡 calculated with 

Gaussian radial basis function 
(rbf) Approximation for prior 
density and observation error 

DATA 

Prior 

Posterior 

 It is an explicit calculation of the Bayes posterior based on 
radial basis function approximation of the prior, with 
subsequent draws from that distribution in the MCMC sense.   

Fourth Step: Gaussian Resampling  

LMCPF = Local Markov Chain Particle Filter 



Large-Scale Experimental Set-up 

 

• Full ensemble: 40 
members 

• Reduced resolution:  
- 26km deterministic 
- 52km ensembles 

• Period:  
01.05.2016 – 
31.05.2016 

Experiments programmed and carried out 
by Anne Walter, DWD& Uni Reading, and 
Roland Potthast, DWD& Uni Reading 
 
In Cooperation with Peter-Jan van 
Leeuwen , Uni Reading 



RMSE 

LETKF 
LAPF 

RMSE 
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Global RMSE for obs-fg statistics (Radiosondes vs. Model) 
Period: 08.05.2016 – 31.05.2016 

Relative humidity Temperature 

~14% 
~15% 

~14% 

LAPF Scores vs LETKF 

Experiments programmed and carried out by Anne Walter, DWD & Uni Reading, and Roland Potthast, DWD & Uni Reading 



LETKF 
LMCPF 

p
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Global RMSE for obs-fg statistics (AIREP vs. Model) 
Period: 08.05.2016 – 22.05.2016 

LMCPF Scores vs LETKF 

Experiments programmed and carried out by Anne Walter, DWD & Uni Reading, and Roland Potthast, DWD & Uni Reading 

Temperature  o-a  and  o-f 

LMCPF: Model Error based Shift works 



RMSE 

LAPF 
LMCPF 

RMSE 
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Global RMSE for obs-fg statistics (Radiosondes vs. Model) 
Period: 08.05.2016 – 22.05.2016 

Relative humidity Temperature 

~7% 

~7% 

LMCPF Scores vs LAPF 

Experiments programmed and carried out by Anne Walter, DWD & Uni Reading, and Roland Potthast, DWD & Uni Reading 
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LAPF 
LMCPF 
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Global RMSE for obs-fg statistics  
Period: 08.05.2016 – 22.05.2016 

Bending Angles (GPSRO) 𝑇𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 (IASI) 

~7% 

~10% 
H
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gh

t 
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LMCPF Scores vs LAPF 

Experiments programmed and carried out by Anne Walter, DWD & Uni Reading, and Roland Potthast, DWD & Uni Reading 



New LMCPF Scores vs LETKF 

WIND o-a  and  o-f 

LMCPF: Model Error based Shift works 



mean 

min 

max 

LETKF 
LAPF 
LMCPF 

Global spread of T [K] ~ 500 hPa 

LAPF Spread vs LMCPF & LETKF 

Experiments programmed and carried out by Anne Walter, DWD & Uni Reading, and Roland Potthast, DWD & Uni Reading 





LETKF 
            LMCPF 

LMCPF Scores vs LETKF 

Experiments programmed and carried out by Anne Walter, DWD & Uni Reading, and Roland Potthast, DWD & Uni Reading 



LMCPF Scores vs LETKF 

LETKF 
            LMCPF 

Experiments programmed and carried out by Anne Walter, DWD & Uni Reading, and Roland Potthast, DWD & Uni Reading 



LMCPF for COSMO 

4D-Particle 
Filter for 
Convection 
Permitting 
Model 
 
COSMO-DE 
Resolution 
2.8km  
Central Europe 

4D-PF 

 

No deterministic run! 
 



LMCPF for COSMO 



LMCPF for COSMO 



LMCPF for COSMO 



LMCPF for COSMO 



 
• LAPF and LMCPF are implemented in an operational NWP 

system: 
• Both Particle Filters are able to provide reasonable atmospheric 

analysis in a large-scale (high-dimensional) environment and are 
running stably over a period of one month 
 

• The LMCPF outperforms the LAPF, both Particle Filters are not far 
behind the operational LETKF, LMCPF starting to be comparable 

 

Summary LAPF and LMCPF 
LMCPF LAPF 

Globally + mesoscale + convective scale (KENDA) 

Both Particle Filters are showing promising results; 
further tuning and development is in progress. 



    

Many Thanks! 


