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Introduction
• Numerical weather prediction (NWP) models are moving towards 

higher resolutions. 
• Need high-resolution observations to constrain these models (e.g. 

PAWR). 
• The presence of non-negligible spatial observation error 

correlations (OECs) has typically meant the observations  need to 
be thinned. 

• However, progress is being made, with centres around the world 
now explicitly accounting for OECs in a variety of observation types. 

• This work explores how to make efficient use of this potentially 
dramatic increase in the amount of data available for assimilation.
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Data compression
• An alternative to thinning is to compress the observations such that the 

maximum amount of information is retained.
• Can define information content of the observations in terms of the 

sensitivity of the analysis to the observations

• This can be summarised in terms of the degrees of freedom for signal, or 
mutual information.



Data compression
• Let M = R-1/2HB1/2 = UΛMVT

• Then 

• Can compress the observations using                                where 
, and pc is the number of compressed observations 

retained for assimilation.

• The compressed observations are given by 
• The error covariance matrix is given by . Can see that 

Rc reduces to 



Data compression

• Ordering the observations w.r.t the singular values of M
allows for the first pc observations with the maximum 
information to be selected for assimilation



Isotropic, homogenous example
• Circulant matrices have the property that eigenvectors are given by 

the Fourier basis, F.
• Let B = FΓFT, R = FΨFT and H = I (direct observations of the 

state)
• Then M = FΨ-1/2Γ1/2FT, C = IcΨ-1/2FT

• and 

• The most informative compressed observations are those 
associated with the scales at which the prior uncertainty is 
relatively large compared to the observation uncertainty.

• The reduction in the analysis error variance compared to the prior is 
given by



Isotropic, homogenous example…
circular grid discretised into 32 grid points. SOAR correlation structure.
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Observation network design 
Conclusions

• As the length-scales in the observation errors, Lr, increase the 
observations become more informative about the small scales.

• When Lr > Lb, the observations are more certain at small scale than the 
prior and so the benefit of denser observations increases.
– Data compression can be used to help reduce the amount of data 

while retaining the small scale information 
– Assimilating just the small-scale information may not result in the 

greatest reduction in analysis error variance
• is this an issue for nested models? 
• use a metric which focuses on accuracy of small scales?



Lorenz 96 example:
Comparison of data thinning strategies

– Circular domain with 40 grid points

– F=8.
– 80 direct, regularly distributed observations of the state are simulated
– Assimilation using EnSRF (Hunt et al. 2007).
– 100 ensemble members
– Pf is no longer circulant
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Data Reduction methods
1. Regular thinning: to every 16th observation (giving 5 in total at each 
assimilation time).

2. Optimal thinning: obs corresponding to the 5 largest diagonal values of S = 
dxa/dy

3. Spatial averaging: Observations are averaged over 8 grid-points

4. Optimal Fourier Data Compression (DC): Observations are compressed 
using a Fourier transform with wavelengths chosen corresponding to the 5 
largest diagonal values of FSFT.

5. Optimal DC: Observations are compressed using the method described 
earlier, again assimilating just the 5 most informative observations.
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Observations are simulated from 
a truth run:
1: R is diag (left)
2: R is spatially correlated (SOAR 
function), significant to 7 grid 
points (right).

Fig: Rows of the observation 
operator matrix for the five 
strategies for
reducing the observation data. 
The optimal strategies are
illustrated for the first 
observation time.



Fig: Results are averaged over
200 experiments with different 
realisations of the observation 
and model error.

correlated ob error
uncorrelated ob error

When observations have correlated 
error they are more sensitive to the 
form of data reduction.

Selecting the observations with the 
greatest information increases the 
condition number of the Hessian. 

Can see that largest MI does not 
necessarily correspond to smallest 
ens spread



Conclusions

• Recent advances in the estimation and inclusion of OECs in 
data assimilation means that we are getting closer to 
assimilating observations optimally at their full resolution.

• The potential large increase in the number of observations 
available for assimilation carries a large computational and 
storage burden with it. 

• Important to justify any increase in the amount of data 
assimilated and give careful thought to data reduction 
strategies.

• Submitted to Tellus A.
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Open questions

• Reducing the cost of on-line data compression
– Approximations to the optimal data compression.
– Need for adaptive compression?

• Sensitivity to accuracy of R and Pf.
• Sensitivity to ensemble size. 

– Small ensemble size restricts info that can be provided by 
the obs- understand effect of e.g. localisation on data 
compression. 
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