Using reconditioning to study the impact of correlated observation errors in the Met Office 1D-Var system

Jemima M. Tabeart jemima.tabeart@pgr.reading.ac.uk @jemimatabeart

Supervised by

Sarah L. Dance, Nancy K. Nichols, Amos S. Lawless, Joanne A. Waller (University of Reading) David Simonin (MetOffice@Reading)

Additional collaboration Stefano Migliorini and Fiona Smith (Met Office, Exeter)

Overview

- Motivation
 - Why do we want to include correlated observation error information?
- Reconditioning is one solution!
 - What is reconditioning?
 - Theory of reconditioning
- 3 Implementation in the Met Office system
 - IASI operational interchannel correlations
 - Impact of reconditioning on convergence
 - Impact of reconditioning on quality control procedure

Why include correlated observation error information?

- Including correlation information allows us to take advantage of dense observation networks to get high-resolution forecasts.
- Using uncorrelated observation error matrices means we have to thin observations - this can result in up to 80% of obs being discarded!
- Neglecting correlations where they are present also limits our skill.
- For high-dimensional problems (e.g. big data) we can only estimate correlation information by sampling.

Why include correlated observation error information?

- Including correlation information allows us to take advantage of dense observation networks to get high-resolution forecasts.
- Using uncorrelated observation error matrices means we have to thin observations - this can result in up to 80% of obs being discarded!
- Neglecting correlations where they are present also limits our skill.
- For high-dimensional problems (e.g. big data) we can only estimate correlation information by sampling.
 - \rightarrow Sample covariance matrices that aren't full rank.
 - ightarrow Sample matrices that are **extremely** ill-conditioned.

Why include correlated observation error information?

- Including correlation information allows us to take advantage of dense observation networks to get high-resolution forecasts.
- Using uncorrelated observation error matrices means we have to thin observations - this can result in up to 80% of obs being discarded!
- Neglecting correlations where they are present also limits our skill.
- For high-dimensional problems (e.g. big data) we can only estimate correlation information by sampling.
 - → Sample covariance matrices that aren't full rank.
 - → Sample matrices that are **extremely** ill-conditioned.

Reminder: If $\mathbf{S} \in \mathbb{R}^{p \times p}$ is a symmetric and positive definite matrix with eigenvalues $\lambda_1(\mathbf{S}) \geq \ldots \geq \lambda_p(\mathbf{S}) > 0$ then we write the condition number

$$\kappa(\mathbf{S}) = \frac{\lambda_1(\mathbf{S})}{\lambda_p(\mathbf{S})}.$$

If **S** is singular, we take $\kappa(\mathbf{S}) = \infty$.

Figure: Diagnosed correlation matrix for IASI

 Satellite observation errors are known to have correlated observation errors [Stewart, 2010].

Figure: Diagnosed correlation matrix for IASI

- Satellite observation errors are known to have correlated observation errors [Stewart, 2010].
- Methods to diagnose covariance matrices exist but yield matrices that are highly ill-conditioned and caused problems with convergence.

Figure: Diagnosed correlation matrix for IASI

- Satellite observation errors are known to have correlated observation errors [Stewart, 2010].
- Methods to diagnose covariance matrices exist but yield matrices that are highly ill-conditioned and caused problems with convergence.
- [Weston et al, 2014] suggested these problems were due to very small eigenvalues and tested two methods of 'reconditioning'.

Figure: Diagnosed correlation matrix for IASI

- Satellite observation errors are known to have correlated observation errors [Stewart, 2010].
- Methods to diagnose covariance matrices exist but yield matrices that are highly ill-conditioned and caused problems with convergence.
- [Weston et al, 2014] suggested these problems were due to very small eigenvalues and tested two methods of 'reconditioning'.
- [Tabeart et al, 2018] proved that the minimum eigenvalue of the observation error covariance matrix is important for the conditioning of the general data assimilation problem.

What is reconditioning?

- Methods which can be applied to matrices to reduce their condition number, while retaining underlying matrix structure.
- Examples of methods:
 - Thresholding
 - Tapering
 - General regularisation methods.

What is reconditioning?

- Methods which can be applied to matrices to reduce their condition number, while retaining underlying matrix structure.
- Examples of methods:
 - Thresholding
 - Tapering
 - General regularisation methods.
- We will focus on a method that is used at the Met Office for numerical weather prediction. This method works by altering the eigenvalues of the original covariance matrix R.

Ridge regression method

Idea: Add a scalar multiple of identity to \mathbf{R} to obtain reconditioned \mathbf{R}_{RR} with $\kappa(\mathbf{R}_{RR}) = \kappa_{max}$.

Setting δ

- Define $\delta = \frac{\lambda_1(\mathbf{R}) \lambda_p(\mathbf{R})\kappa_{max}}{\kappa_{max} 1}$.
- Set $\mathbf{R}_{RR} = \mathbf{R} + \delta \mathbf{I}$

Ridge regression method

Idea: Add a scalar multiple of identity to **R** to obtain reconditioned \mathbf{R}_{RR} with $\kappa(\mathbf{R}_{RR}) = \kappa_{max}$.

Setting δ

- Define $\delta = \frac{\lambda_1(\mathbf{R}) \lambda_p(\mathbf{R})\kappa_{max}}{\kappa_{max} 1}$.
- Set $\mathbf{R}_{RR} = \mathbf{R} + \delta \mathbf{I}$

We can prove theoretically (ISDA talk):

- Standard deviations are increased by using this method.
- Absolute value of off-diagonal correlations decreased by this method.

IASI matrix - framework

Interchannel correlations for a covariance matrix of satellite observation errors

- The UK Met Office diagnosed a correlated observation error covariance matrix in 2010.
- This was extremely ill-conditioned and crashed the system when used directly.
- Use 137 channels **Original condition number:** 27703.

We study the impact of reconditioning in the 1D-Var procedure.

- Run prior to every 4D-Var/forecast cycle.
- Assimilates each observation individually
- Used as quality control (reject ob if it doesn't converge in 10 iterations)
- Also used to fix values for variables that aren't assimilated in 4D-Var procedure.

Diagnosed IASI correlation matrix

Experimental choices of R_{RR} - standard deviations

Figure: Standard deviation for each of the experiment choices

Experimental choices of R_{RR} - correlations

Figure: Changes to correlation with reconditioning for the correlated experiments

Impact of reconditioning on convergence

Figure: Number of iterations required to reach convergence of the 1D-Var minimization as a fraction of the total number of observations common to all choices of **R**. Symbols correspond to: $\triangle = \mathbf{R}_{diag}$, $\circ = \mathbf{R}_{est}$, $\lozenge = \mathbf{R}_{67}$, $\lozenge = \mathbf{R}_{infl}$.

Impact on temperature and humidity

Figure: Example retrieved profiles of temperature (a) and specific humidity (b), and differences in retrievals between E_{diag} and E_{67} for temperature (c) and specific humidity (d) for 97330 observations.

Impact of reconditioning on quality control procedure

Set	No. of accepted obs	No of obs accepted by both $E_{ extit{diag}}$ and $E_{ extit{exp}}$
R _{diag}	100686	99039
R_{est}	100655	99175
R_{1000}	101002	99352
R ₅₀₀	101341	99656
R ₆₇	102333	100382
Rinfl	102859	100679

Table: Change to number of accepted observations with reconditioning

Impact of reconditioning on variables not in 4D-Var state vector

Figure: Change to estimates for skin temperature (left), cloud fraction (centre) and cloud top pressure (right) with reconditioning.

What about the outliers?

	E_{est}	E ₁₅₀₀	E ₁₀₀₀	E ₅₀₀	E ₆₇	E_{infl}
% outliers (CF)	23.9	24.0	24.2	24.6	25.3	21.4
% outliers (CTP)	22.8	22.8	23.0	22.9	21.4	18.8
% outliers (ST)	15.1	15.3	15.6	16.3	17.6	15.9
Max diff (ST (K))	21.67	21.12	21.14	22.38	21.03	26.83
Min diff (ST (K))	-33.52	-33.01	-32.14	-29.76	-23.82	-20.88

What about the outliers?

	E_{est}	E_{1500}	E ₁₀₀₀	E ₅₀₀	E ₆₇	E _{infl}
% outliers (CF)	23.9	24.0	24.2	24.6	25.3	21.4
% outliers (CTP)	22.8	22.8	23.0	22.9	21.4	18.8
% outliers (ST)	15.1	15.3	15.6	16.3	17.6	15.9
Max diff (ST (K))	21.67	21.12	21.14	22.38	21.03	26.83
Min diff (ST (K))	-33.52	-33.01	-32.14	-29.76	-23.82	-20.88

Think about **extreme outliers** - defined here as mean \pm 0.25 \times max difference

	E_{est}	E_{1500}	E_{1000}	E_{500}	E_{67}	E_{infl}
% CF > 0.25	4.9	4.7	4.4	3.9	3.2	7.5
% CTP > 225hPa	3.3	3.3	3.3	3.3	2.7	4.4
% ST > 5K	1.6	1.5	1.5	1.4	1.4	3.6

Conclusions

- Including correlated observation error in data assimilation methods is important for high-resolution forecasts and to make the best use of observation information.
- Convergence problems can be mitigated by using reconditioning methods.
- Tests in the Met Office 1D-Var system show that:
 - the ridge regression method improves convergence.
 - the quality control process is altered.
- Future work is needed to understand why some retrieved values change by a large amount.

References I

J. M. Tabeart, S. L. Dance, S. A. Haben, A. S. Lawless, N. K. Nichols, and J. A. Waller (2018)

The conditioning of least squares problems in variational data assimilation.

Numerical Linear Algebra with Applications http://dx.doi.org/10.1002/nla.2165

P. Weston, W. Bell and J. R. Eyre (2014)

Accounting for correlated error in the assimilation of high-resolution sounder data *Q. J. R Met Soc* 140, 2420 – 2429.

Niels Bormann, Massimo Bonavita, Rossana Dragani, Reima Eresmaa, Marco Matricardi, and Anthony McNally (2016)

Enhancing the impact of IASI observations through an updated observation error covariance matrix

doi: 10.1002/qj.2774

S. Rainwater, C. H. Bishop and W. F. Campbell (2015)

The benefits of correlated observation errors for small scales

Q. J. R. Met. Soc. 141, 3439-3445

References II

O. Ledoit and M. Wolf (2004)

A well-conditioned estimator for large-dimensional covariance matrix.

J. Multivariate Anal. 88:365-411

M. Tanaka and K. Nakata (2014)

Positive definite matrix approximation with condition number constraint.

Optim. Lett. 8:939947.

Laura Stewart (2010)

Correlated observation errors in data assimilation

PhD thesis University of Reading