Development and application of aerosol data assimilation in NICAM

Tie Dai¹, Yueming Cheng¹, Daisuke Goto², Guangyu Shi¹, and Teruyuki Nakajima³

 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
National Institute for Environmental Studies, Tsukuba, Japan
Earth Observation Research Center, Japan Aerospace Exploration Agency, Tsukuba, Japan

2019.2.1

Can observations improve model to simulate the aerosol distribution and its impact?

AOT / AE / SSA

emission

Forward Model: Global and regional high-resolution model NICAM-Chem

Global online aerosol model: NICAM+SPRINTARS

Direct aerosol effect on radiative balance; 1st and 2nd indirect aerosol effects on clouds

Local Ensemble Transform Kalman Filter (LETKF, Ott et al.2004, Hunt et al., 2007, Miyoshi et al 2007a,b)

- 1. The assimilation system uses the some grid and regional system as the forward model (NICAM-SPRINTARS), so it is convenient to use the forward model forecast variables.
- 2. The observation sites are searched in each region at the same time. If one site is found, the simulated observation will be calculated and transmit it to all of the other processors to generate the global observations.
- 3. In every grid point, each processor assimilate the useful observation based on the distance between the observation site and the grid point.
- 4. Output the analysis results for the next forward calculation.

Observation operater (H): transfer the control variables (fine and coarse aerosol masses) to observed aerosol optical properties

T. Dai et al. / Atmospheric En

Table 1

72

Particle density, particle radius, refractive index, mass extinction coefficient (β), AE derived from β at 440 and 870 nm, and SSA for dry aerosol as used in the model.

Species	Density (g cm ⁻³)	dry particle radius (µm)	Refractive index at 550 nm	eta at 550 nm (m ² g ⁻¹)	AE	SSA
Sulfate	1.769	0.0695	1.43–10 ^{–8} i	1.775	2.740	1.000
BC	1.25	0.0118	1.75–0.44i	8.185	1.119	0.323
OC	1.5	0.02	1.53-0.006i	1.062	2.683	0.915
OC/BC (1)	1.473	0.1	1.558-0.063i	5.455	1.520	0.766
OC/BC (2)	1.468	0.1	1.563-0.072i	5.547	1.478	0.741
OC/BC (3)	1.442	0.1	1.588-0.126i	6.036	1.278	0.638
OC/BC (4)	1.462	0.1	1.569-0.085i	5.666	1.426	0.712
OC/BC (5)	1.468	0.1	1.563-0.072i	5.547	1.478	0.741
Dust	2.5	0.13	1.53-0.0055i	2.239	2.811	0.965
	2.5	0.20	1.53-0.0055i	3.809	1.838	0.976
	2.5	0.33	1.53-0.0055i	3.652	0.608	0.972
	2.5	0.52	1.53-0.0055i	2.059	-0.405	0.950
	2.5	0.82	1.53-0.0055i	1.013	-0.348	0.903
	2.5	1.27	1.53-0.0055i	0.687	-0.081	0.876
	2.5	2.02	1.53-0.0055i	0.397	-0.010	0.831
	2.5	3.20	1.53-0.0055i	0.248	-0.047	0.778
	2.5	5.06	1.53-0.0055i	0.155	-0.0530	0.719
	2.5	8.02	1.53-0.0055i	0.089	-0.041	0.652
Sea salt	2.2	0.178	1.50–10 ^{–8} i	4.257	1.850	1.000
	2.2	0.562	1.50–10 ^{–8} i	1.715	-0.352	1.000
	2.2	1.78	1.50–10 ^{–8} i	0.493	0.011	1.000
	2.2	5.62	1.50—10 ^{—8} i	0.168	-0.078	1.000

Note: OC/BC (1–5) represent the internal mixture of OC and BC for tropical forest fire, other forest fire, fossil fuel, fuel wood, and agriculture source, respectively. The β and SSA for sulfate, BC, OC, OC/BC, and sea salt are calculated from the Miescattering theory using a mono-modally lognormal size distribution. The modal radii (r_m) for sulfate, BC, OC, OC/BC, and sea salt are 0.0695, 0.0118, 0.02, 0.1, and 0.114 µm, while the geometric standard deviations (σ_g) are 1.526, 2.3, 1.8, 1.562, and 2.305, respectively. The size distribution for dust aerosol is assumed a bi-modally lognormal distribution with $r_m = 0.202$, 0.994 µm and $\sigma_g = 2.397$, 1.110.

Fig. 1. Mass extinction coefficient (β) at 550 nm (left column), AE derived from β at 440 and 870 nm (middle column), and SSA at 550 nm (right column) for sulfate, carbonaceous aerosols, and sea salt as a function of relative humidity. Here, OC/BC (1–5) represent the internal mixture of OC and BC for tropical forest fire, other forest fire, fossil fuel, fuel wood, and agriculture source, respectively. Four different sizes of sea salt are shown with respective dry radius (r_d).

MODIS observations and experiment setting (LETKF with every 6 hours)

Dai et al, 2014, Environmental Pollution

Period: 2006 April Asian Dust occurs frequently Random perturb the standard aerosol emissions with standard deviations 1to generate the ensemble members

Table 1

Experimental design for the sensitivity test in this study.

Sensitivity experiments

Exp1: 10 ensemble members; spatiotemporally dependent perturbation factors; with a local patch radius of 1500 km Exp2: same as Exp1 but spatiotemporally independent perturbation factors Exp3: same as Exp1 but 20 ensemble members Exp4: same as Exp2 but 20 ensemble members Exp5: same as Exp1 but 40 ensemble members Exp6: same as Exp2 but 40 ensemble members Exp7: same as Exp1 but local patch radius of 1000 km Exp8: same as Exp1 but local patch radius of 2000 km Exp9: standard NICAM + SPRINTARS Exp10: free run with 10 ensemble members and spatiotemporally dependent perturbation factors Exp11: free run with 10 ensemble members and spatiotemporally independent

perturbation factors

Sensitivity to the Kalman filter parameters

- The perturbation method has the largest influence on the performance of the assimilation compared with the ensemble and local patch sizes.
- The general spatiotemporally independent random perturbation factors tend to yield a low estimation of the model uncertainties and the analyses are affected by an overconfidence in the modeled estimate
- The perfect spatiotemporally dependent modification factors looks to be a better choice.

Validation using the AERONET observations

Table 2
Summary of the statistics for the modeled and AERONET observed AOD comparisons. ^a

Site name	N	Мо	Bs	Ва	Rs	Ra	AEC
Beijing	61	0.943	-0.780	-0.677 (♠)	0.162	0.411 (♠)	10.47
Xinglong	66	0.577	-0.420	-0.306 (♠)	0.300	0.720 (♠)	22.70
Xianghe	62	0.881	-0.705	-0.607 (♠)	0.116	0.528 (♠)	12.64
Anmyon	19	0.631	-0.469	-0.242 (♠)	0.188	0.463 (♠)	24.53
Gwangju_GIST	12	0.557	-0.340	-0.113 (♠)	-0.145	0.597 (♠)	49.31
Gosan_SNU	27	0.436	-0.068	0.057 (♠)	0.046	0.638 (♠)	56.62
Osaka	25	0.497	-0.228	-0.126 (♠)	0.065	0.498 (♠)	35.65
Shirahama	30	0.372	-0.097	0.011 (♠)	-0.231	0.252 (♠)	23.54
Taihu	36	0.734	-0.393	-0.249 (♠)	0.124	0.549 (♠)	35.56
Taipei_CWB	16	0.468	-0.139	–0.179 (↓)	-0.453	-0.254 (†)	3.96
Chen-Kung_Univ	18	0.271	0.024	0.004 (♠)	0.320	0.580 (♠)	14.54
Hong_Kong_Polyu	13	0.621	-0.326	-0.308 (♠)	0.340	0.512 (♠)	5.75

^a Note. Shown are the site name, the number of the total available model-observed pairs (*N*), monthly mean AERONET observed AOD (M_0), the mean bias of the standard model (B_s), the mean bias of the assimilation experiment Exp1 (B_a), the correlation coefficient of the standard model (R_s), the correlation coefficient of the assimilation experiment Exp1 (R_s), and the assimilation efficiency of the experiment Exp1 (AEC). The symbol ϕ indicates the modeled results are improved by the assimilation, whereas the symbol ϕ indicates the modeled results are worsened by the assimilation.

Yin et al, AR, 2016

10

AOD_DUST(W/O)

AOD_DUST(W/A)

0.026

(c)

0.008

AOD(W/A-W/O)_DUST

0.034

Validation over Chinese desert regions

Geostationary satellites have higher observation frequency than the conventional polar orbiting satellites.

Geostationary satellite:

Himawari-8

Conventional polar orbiting satellite: MODIS

The comparison between Himawari-8, MODIS and AERONET

The observation frequencies of Himawari-8 are generally much **higher** than that of MODIS, especially over the **NCP**, **India**, **and Australia areas**, and they are generally **comparable to** that of the ground-based AERONET.

The correlation coefficient of AERONET with Himawari-8 is **0.750**, higher than that with MODIS.

Himawari-8 can provide the data with more higher spatio-temporal observation frequencies and higher qualities than MODIS and AERONET.

Hourly observations and NICAM-Chem output (3D-LETKF .vs. 4D-LETKF)

Experimental Design

Period: 2016.Nov 1 - 2016.Nov 30 Region: 60°S-60°N, 80°E-200°E

Experiment	Ensemble Number	Assimilation Window
CONTROL	1	Νο
LETKF	20	1 hour
4D-LETKF-6H	20	6 hour
4D-LETKF-24H	20	24 hour

Elapsed time and Observation constraint

The assimilated observations for 4D-LETKF generally respond linearly to the assimilation window interval.

Most of the elapsed time of LETKF is used to set up the model frame for ensemble forecasts and assimilation.

4D-LETKF-24H can significantly enhance the computational efficiency and maximally use the daily cycle of Himawari-8-retrieved AOTs.

Comparison of the analysis with Himawari-8

Sea

120°E

0

90°E

-0.04

-0.08

150°E

180

0.04

90°E

0.08

120°E 150°E

sulfate aerosols over East Asia and dust aerosols over Australia.

The general underestimations of AOT over India and ocean areas are also corrected.

Comparison of the analysis with Himawari-8

The AEs are mostly positive, indicating that assimilations positively affect the model performances.

The correlation coefficients of assimilation results with Himawari-8 are all higher than 0.79.

Comparison of the analysis with AERONET

Evaluation of the temporal evolutions of AOTs with the AERONET

Assimilation can better reproduce the temporal variations of aerosols.

It is difficult to improve the obviously underestimated sites.

There are some differences between satellite-retrieved data and AERONET ones.

Comparison of the analysis with MODIS

The analyses can also better reproduce the spatial and temporal variations of the MODIS AOT observations.

4D-LETKF NICAM-Chem 72 hours forecast system

Evaluation of the 72h AOD forecast with assimilation of Himawari-8

In the first 24 hours, whether improving the initial condition has obvious effects on the results.

After 48 hours, the effects of initial condition on the forecast results are very weak.

Evaluation of the 72h forecast PM_{2.5} concentration (RMSE)

Experiment	24H	48H	72H
RMSE	292(80%)	299(82%)	302(83%)

Evaluation of the 72h forecast PM₁₀ concentration (RMSE)

Experiment	24H	48H	72H
RMSE	298(82%)	281(77%)	251(69%)

Aerosol vertical data assimilation using CALIPSO (preliminary results)

RMSE between CONTROL experiment and CALIPSO

The difference between the RMSE of CONTROL and RMSE of CAIPSO shows the obvious decreasing of RMSE in many parts especially in Asia.

Summary

- 1. We successfully develop a LETKF and 4D-LETKF aerosol assimilation system for NICAM, which are applied to assimilate both the polar and geostationary satellite observations such as the MODIS and Himawari-8.
- 2. One month hourly aerosol analyses are generated with the 4D-LETKF system, which can significantly improve the calculation efficiency. The aerosol analyses are more comparable to both the assimilated Himawari-8 AOTs and independent AERONET and MODIS AOTs. The assimilation system correctly reduce the overestimation of the AOTs over East China, which are probably due to the reduction of emissions in China recently.
- 3. The assimilation of Himawari-8 AOTs can also correct the aerosol initial conditions and emissions, improving the aerosol forecast especially over the first 24 hours.

Thank you !