Impact of Geostationary Satellite Borne Precipitation Radar on NWP: An OSSE with an EnKF for a Typhoon Case

Atsushi Okazaki, Takumi Honda, Shunji Kotsuki, James Taylor, and Takemasa Miyoshi

25 April 2019 @ DA seminar, R-CCS

What's next for satellite-borne radar?

GPR (**G**eostationary satellite borne **P**recipitation **R**adar) is one of the potential mission as a successor of GPM/DPR

TRMM/PR

1997-2015

Next Generation Rainfall Measurement Satellite

GPM/DPR

2014-

Today's contents

- 1. What kind of observation can GPR get?
- 2. Impact of GPR on NWP

Simulating precipitation radar observations from GPR

Okazaki, Honda, Kotsuki, Yamaji, Kubota, Oki, Iguchi, and Miyoshi, Atomos. Meas. Tech. Discuss., 2018.

What kind of observation can GPR get?

Advantage

- Quasi-continuous precipitation observation (c.f. TRMM overpasses 500km-500km box 1-2 times/day)

Disadvantage

- Relatively coarse horizontal resolution (i.e. large sampling volume) (c.f. 5km in GPM/DPR)
- Tilted sampling volume at the off-nadir
- ightarrow severe ground clutter

Simulation of GPR observation

Radar-received power from precipitation (P_r) :

$$P_{\rm r} = \frac{P_t \lambda^2}{(4\pi)^3} \int_{r_0 - c\tau/4}^{r_0 + c\tau/4} \int_{\theta_0 - \pi}^{\theta_0 + \pi} \int_{\phi_0 - \pi/2}^{\phi_0 + \pi/2} f^4(\theta, \phi) \bar{\sigma}_b(r, \theta, \phi) r^{-2} \cos\theta \, d\phi \, d\theta \, dr$$

- θ, ϕ : Scan angle
- r: Range
- $f^4(\theta, \phi)$: Beam pattern (2-way). Gaussian pattern approximated by 5th order polynomial is used
- $\bar{\sigma}_b(r,\theta,\phi)$: total backscattering calculated with Joint-Simulator (Hashino et al., 2013; Masunaga & Kummerrow, 2005). Single particle backscattering is calculated by assuming the Mieapproximation.

Simulation of GPR observation

Radar-received power from the surface (P_s)

$$P_{s} = \frac{P_{t}\lambda^{2}}{(4\pi)^{3}} \iint_{A} \frac{f^{4}(\theta,\phi)\sigma_{0}}{r^{4}} dA$$

Normalized radar cross section (NRCS) for sea surface (Wentz et al., 1984)

$$\sigma_0 = b_0 (U_{10})^{b_1}$$

$$P_s \sim \text{surface wind speed}$$
 and incident angle

Simulation of GPR observation

Simulation of GPR observation: A real case

Okazaki et al.: Simulating precipitation radar observations from a geostationary satellite, *Atmos. Meas. Tech.*, 2019.

Simulation of GPR observation: A real case

Clutter contaminated area

Okazaki et al.: Simulating precipitation radar observations from a geostationary satellite, *Atmos. Meas. Tech.*, 2019.

Simulation of GPR observation (revised)

Radar-received power from precipitation (P_r) :

$$P_{\rm r} = \frac{P_t \lambda^2}{(4\pi)^3} \int_{r_0 - c\tau/4}^{r_0 + c\tau/4} \int_{\theta_0 - \pi}^{\theta_0 + \pi} \int_{\phi_0 - \pi/2}^{\phi_0 + \pi/2} f^4(\theta, \phi) \bar{\sigma}_b(r, \theta, \phi) A_P(r, \theta, \phi) r^{-2} \cos\theta \, d\phi \, d\theta \, dr$$

- θ, ϕ : Scan angle
- *r*: Range

- $f^4(\theta, \phi)$: Beam pattern (2-way). Uniform-distribution is assumed
- $\bar{\sigma}_b(r,\theta,\phi)$: total backscattering calculated with Joint-Simulator (JS; Masunaga & Kummerrow, 2005). Single particle backscattering is calculated by assuming the Mieapproximation.
- $\begin{array}{ll} A_P(r,\theta,\phi) \colon & \text{Attenuation coefficient.} \\ & A_P(r,\theta,\phi) = \exp \bigl[-2 \int_0^r \bar{k}_{ext}(r',\theta,\phi) dr' \bigr], \text{ where } \bar{k}_{ext} \text{ is extinction coefficient calculated by JS} \end{array}$

Simulation of GPR observation: A real case w/ sidelobe clutter & attenuation

Okazaki et al.: Simulating precipitation radar observations from a geostationary satellite, *Atmos. Meas. Tech.*, 2019.

Main lobe clutter contaminated

area Sidelobe clutter contaminated area

Simulation of GPR observation: A real case w/ sidelobe clutter & attenuation

Assimilation of Radar reflectivity for Tropical Cyclone with an EnKF

Preparatory experiments for GPR assimilation

Difficulty in reflectivity assimilation

 Assimilation of radar reflectivity fails to produce deepening of tropical cyclone (Dong & Xue, 2013)

Is it possible to simulate TC only with Z...?

Conventional view of TC intensification

Experimental Design

- Experiment type
 - Perfect model OSSE

Case

- Typhoon Soudelor (2015)
- Observation
 - Radar reflectivity at all the model grid point
 - Frequency: 1 [h]
 - Error: 5 [dBZ]

DA system

- SCALE-LETKF (Lien et al., 2017)
- Joint-Simulator (Hashino et al., 2013) to calculate radar reflectivity
- 50 members
- Localization: H: 10km, V: 0.3Inp
- Inflation: RTPP with lpha=0.8 (Zhang et al., 2004)
- Thinning: 1/25 horizontally & 1/5 vertically
- Clear reflectivity shift (G.-Y. Lien, personal communication)

 $y = \begin{cases} y \ (y \ge 20 dBZ) \\ 15 \ (y < 20 dBZ) \end{cases}$ (similar to Aksoy et al., 2009, but leave a 5-dBZ gap)

Z @ 1000[m]: temporal evolution

$2015/7/29 \ 0700 - 2015/7/30 \ 0900$

SLP: temporal revolution 2015/7/29 0700 – 2015/7/30 0900

SLP fields are contaminated by noise!

Where does the noise come from?

 $|\partial P_s/\partial t|$: metric of imbalances (Lange and Craig, 2014; Bick et al., 2016)

Localization and Imbalance

Sensitivity to the localization scale

Localization in previous radar-DA

	Reference	Ensemble size	Analysis grid (km)	Localization cutoff (r, km)
	Snyder and Zhang (2003)	50	2	H:4; V:4
	Dowell et al. (2004)	50	2	H:6; V:6
	Tong and Xue (2005)	100	2	H: 8; V: 8
	Caya et al. (2005)	100	2	H : 7.3; V : 7.3
	Aksoy et al. (2009)	50	2	H:5; V:4
	Dowell and Wicker (2009)	50	1	H:6; V:6
	Dowell et al. (2011)	50	1	H:6; V:6
	Dong et al. (2011)	50	2	H:6;V:6
	Dawson et al. (2012)	30	1	H:12; V:6
				Sobash and Stensrud (2013)
	TC case			
	Zhang et al. (2009)	30	4.5	H: 135, 405 (SCE)
	Aksoy et al. (2012)	30	3	H: 240
Reflectivity →	Dong and Xue (2013)	32	4	H : 12; V : 4
Brightness →	Zhang et al. (2016)	60	3	H: 30 (200) for hydro (others
Temperature	Honda et al. (2018)	50	3	H: 219

Another source of noise in SLP

- Sea Level Pressure (hPa)
- Variable localization (Kang et al., 2011)

Correlation b/w reflectivity and model prognostic variables

27

Another issue: #Observation

More than 60% of the observations were rejected!

qc_good
qc_ref_mem
qc_gross_error
qc_out_vlo

Difficulty in reflectivity assimilation with EnKF

 Increment is zero in case of XO, in which all the ensemble members do not have precipitation

$$x^{a} = x^{f} + \frac{cov\left(x^{f}, \mathcal{H}(x^{f})\right)}{B+R}(y^{o} - \mathcal{H}(x^{f}))$$

A technique to avoid XO: Averaging

Grid w/o precipitation (+)

Experimental Design

- Experiment type
 - Perfect model OSSE

Case

- Typhoon Soudelor (2015)
- Observation
 - Radar reflectivity at all the model grid point
 - Frequency: 1 [h]
 - Error: 5 [dBZ]

DA system

- SCALE-LETKF (Lien et al., 2017)
- Joint-Simulator (Hashino et al., 2013) to calculate radar reflectivity
- 50 members
- Localization: H: 100km, V: 0.2km
- Inflation: RTPP with lpha=0.8 (Zhang et al., 2004)
- Clear reflectivity shift (GY Lien, personal communication)

 $y = \begin{cases} y \ (y \ge 20 dBZ) \\ 15 \ (y < 20 dBZ) \end{cases}$ (similar to Aksoy et al., 2009, but leave a 5-dBZ gap)

Experimental Design (cont.)

Experimental Design (cont.)

Experiments

- NoDA
 - Free run
- w/o averaging
 - Assimilate radar reflectivity
 - Thinning: 1/25 horizontally & 1/5 vertically
- w/ averaging
 - Assimilate averaged radar reflectivity $y^{0} Hx^{b} = 10 \ln(\sum Z^{0,b})$
 - $y^{o}, Hx^{b} = 10 \ln(\sum Z^{o,b})$
 - Averaging scale: 5x5 horizontally
 - Thinning: 1/5 vertically
 - the number of obs is the same as w/o averaging

Correlation b/w reflectivity and model prognostic variables

Increment in height-radius cross section

Composites of azimuthally averaged radius-height cross sections at 10 different times (every hour from 1800 UTC 1 Aug to 0000 UTC 2 Aug).

Averaging improves precipitation

#Obs (after QC) 59704→75807 @1st cycle

Why does the forecast track error grow quickly?

TC track is largely controlled by steering flow and β -effect

GPR Assimilation with an EnKF

An Observing System Simulation Experiment for a Typhoon Case

Experimental Design

Observation

- **GPR** (20km resolution / 20km sampling span; hourly)
- TC-vital (TC-center position & MSLP; hourly)
- Conventional data (PREPBUFR; hourly)

DA system

- SCALE-LETKF (Lien et al., 2017)
- Joint-Simulator (Hashino et al., 2013) with GPR simulator (Okazaki et al., 2019)
- 50 members
- Localization: H: 100km, V: 0.2km
- Inflation: RTPP with $\alpha = 0.8$ (Zhang et al., 2004) -
- Thinning: 1/25 horizontally & 1/5 vertically
- Clear reflectivity shift (G.-Y. Lien, personal communication)

 $y = \begin{cases} y \ (y \ge 20 dBZ) \\ 15 \ (y < 20 dBZ) \end{cases}$

(similar to Aksoy et al., 2009, but leave a 5-dBZ gap)

EXP	Observation
CNV+TCV	Conventional obs. TC-vital
GPR	Conventional obs. TC-vital GPR measured Z
GPR w/ clutter	Conventional obs. TC-vital GPR measured Z (above 5km)

GPR at 1st DA cycle (13Z1AUG)

GPR at 3rd DA cycle (15Z1AUG)

GPR at 6th DA cycle (18Z1AUG)

GPR at 9th DA cycle (21Z1AUG)

GPR at 12th DA cycle (0Z1AUG)

Why GPR (w/ clutter) is better?

Correlation between Z and Qv

RMSE for Qv (Rainy-area average)

Reflectivity observations are detrimental for lower atmosphere

Summary and Future work

- We evaluated the potential of GPR for a typhoon case
- We demonstrated that GPR has a potential to improve forecasts for typhoon intensity
- GPR assimilation may benefit from its relatively large sampling volume
- The impact of surface clutter should be small on TC case
 - Reflectivity has high correlations at high altitude
 - TC is a tall system

• Additional impact of GPR when assimilated together with Himawari-8

atsushi.okazaki@riken.jp

What is the best operation for GPR?

• GPR can measure the area around TCs densely (i.e. over-sampling)

Remaining issues…

- Highly non-Gaussian error distribution
 - Additive noise (Dowell & Wicker, 2009)
 - Pseudo-RH (e.g. Caumont et al., 2010) did not solve the problem
- Non-Gaussianity combined with nonlinearity in \mathcal{H} makes it difficult to assimilate radar reflectivity effectively with EnKF
 - Gaussian Transform (Lien et al., 2013; 2016; Kotsuki et al., 2017)
 - Local PF (Poterjoy, 2016)
 - Hybrid-DA (e.g. E4DVar, EnVar) may be a good option?

