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although ...

What has changed : 
● Data Deluge                                             avent of WWW 
● Moore law                                                or continuation 
● New algorithms              or better understanding of old ones



Machine Learning

Learning from examples                                          recognition tasks 
● Supervised                                                all examples are labelled 
● Semi-supervised                                   some examples are labelled 
● Unsupervised                                              no  example is labelled 

Reinforcement Learning                              sequential decision making
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Ce qui a changé : 
● Déluge de données 
● Puissance des machines 
● Nouveaux algorithmes  

A toy case-study 

● One example = (x1,x2, y),       where y is the label (red or blue here) 
● Goal: find a model f(x1,x2) that separates the labels 
● allowing to correctly label future unlabelled example from (x1,x2)

Supervised Learning



Apprentissage  supervisé

Ce qui a changé : 
● Déluge de données 
● Puissance des machines 
● Nouveaux algorithmes  

A zoology of models 
● Linear and Polynomial 
● Bayésiens Networks 
● Decision trees and Random Forests 
● Support Vector Machine (kernel machines) 
● Artificial Neural Networks 

                                                                                     
                                                      

One neuron
A network of neurons 

Parameters are the weights wij

Supervised Learning



Learning Phase 
Gradient back-propagation aka Stochastic Gradient Descent 
● Present the examples 1 by 1 

○ or mini-batch by mini-batch 
● Forward pass: Compute the Loss  

e.g.,     L =  ∑ |y(x1,x2) - NN(x1,x2)|2 

● Backward pass: Compute ▽wL (chain rule) 

● Modify the weights wij from ▽wL  
to decrease of the loss 

● Loop 
Recognition Phase aka Inference 

Present an unlabelled example, the output of the network is the predicted label

Deep Supervised Learning



Neural Networks zoology
Almost complete list of  
neural network architectures 



      Good Old Computer Vision
Hand-made features CATLearned classifier



End-to-end Learning
Features and Classifier are learned together CAT



● Many datasets available  
○ ImageNet : 14+ M examples, 1000 classes 

● (pre-trained) networks with numerous layers 
○ up to 152 ! 

● Millions to billions weights 
○ hundreds of GPU mandatory for learning 

● Several tricks of the trade 
○ Dropout, residual layers, ensembles, ... 

        State-of-the-art

He et al., 2015



Better than human learning

Deep Learning

Human



Outstanding performances … in well-focused domains 

● Supervised learning 
○ Image/videos 
○ NLP / translation 

● Reinforcement/sequential learning 
○ Games (AlphaZero) 
○ Dynamical systems (Fluid/Structure) 

● Representation learning 
○ generative models (GANs) 
○ domain transfer (DANNs)  

● Toward Differentiable Programming 

many successes, and fun applications, but ... 

Deep Learning



A very high number of hyperparameters to tune 

● Cost function 
● Topology of the network 

○ nblayers, nb neurons, residual or not residual, ... 
● Activation functions (sigmoid, tanh, ReLU, …) 
● Batch size (and curriculum) 
● Optimizer (SGD, Momentum, Adam, Adagrad, …) 

○ and its parameters (e.g., learning rate) 
● Initialization 
● Dropout, Batch Normalisation, ... 
● ... 

Empirical rules, or meta-optimization (meta-costly)

DL configuration: more of an art



Mathematically grounded representation of phenomena 

● Poisson equation 

● Heat equation  

● Generally no analytical solution 

Numerical solutions by discretisation of the domain 
● Finite differences, finite elements, finite volumes, ...

Partial Differential Equations



Mathematically grounded representation of phenomena: exemple 

● Generalized Poisson equation 

Partial Differential Equations

Conductivity σ                 Sample mesh         Computed current



But does “The Data Deluge Make the Scientific Method Obsolete”(*)? 

The answer is of course “no” ... 

This talk: survey of synergies between Machine Learning and PDE solving.

PDEs and ML

(*) C. Anderson (2008). “The End of Theory”, Wired Magazine. url: https://
www.wired.com/2008/06/pb-theory/.



● Simulation is fine, but huge output data 
○ DL for Data Analytics (Climate, Particle Physics, …) 

● Simulation is fine, but 
○ DL as surrogate model (whole simulation, or sub-components) 
○ Physic Informed Deep Learning 
○ Deep Galerkin Method (high dimensions) 
○ PDE-NET 

● Inverse problems / calibration 
○ Often ill-posed 

● Mechanistic model is unknown 
○ Learn an analytical model from data 
○ Learn a black-box model from data

ML and PDEs: Agenda
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● Experiments, either real or simulated, produce loads of data 
○ Manual interpretation not possible any more 

● Particle physics experiments: several challenges 

             The Higgs boson Challenge (2014) 
● Largest Kaggle challenge (1785 entries) 
● < 100 Boson events per year (1010 events) 
● DL winner … unpractical for physicists 

       The TrackML challenge (2018-2019) 
● 10-100 Billion events/year 
● Reconstruct particle trajectories 
● from sparse point-wise traces 
● Winner is not a machine learner

Data Analytics for Simulation Results



Recognize forthcoming Tropical Cyclones in simulation outputs 
● Public Data: Community Atmosphere Model (CAM5) 
● 16 variables 
● 1152x768 spatial grid, 3 hours time step 
● 100 years are available, ~63000 hires samples 
● labeled with supervised expert heuristics 
● 3 classes: TCs (0.1%), Atmospheric Rivers (1.7%) and Background 

Deep Learning for Climate Analytics

T. Kurth et al., “Exascale Deep Learning for Climate Analytics”, Super Computing 2018



● Specific architecture DeepLabV3+ 
● High-speed parallel data staging 

○ 27 360 GPUs, 999 PF/s 
○ distribution using Horovod (MPI) 
○ and all_reduced procedure 

● Ran on Summit, first in TOP500 

● Weighted loss 1/sqrt(frequency) 
● Layer-wise adaptive learning rate control 

A new era for extreme weather prediction!

Deep Learning for Climate Analytics

T. Kurth et al., “Exascale Deep Learning for Climate Analytics”, Super Computing 2018

Deep Learning for Climate Analytics



● Analysis of simulation results can also be used as feedback to the 
simulation itself 

○ to detect numerical instabilities before they take place 
○ and take appropriate counter-measures (e.g., locally modify 

diffusion parameter, adaptative discretization). 
BUT 

● … need some expert labeling 

Data Analytics for Simulation Results
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A basic example: Regression of the complete solution 

● Poisson equation: ∇ · (ε(x)∇ϕ(x)) = −ρ(x) , x ∊ D 
                        φ|∂D = 0 

● Inputs:  permittivity ε and source distribution ρ 
● Outputs: dielectric potential ϕ 

● Finite differences on a fixed Cartesian grid 
● Inputs assumed constant in each pixel/voxel 

● “Standard” CNN architecture 
● Regularized MSE loss 

Accelerating simulations

W. Tang et al., "Study on a Poisson's equation solver based on deep learning technique,"  
2017 IEEE Electrical Design of Advanced Packaging and Systems Symp. (EDAPS), 2017.



Regression of the complete solution (2) 
●  64x64(x64) grids 
● 8000/2000 examples (finite differences) 

● Error: 1.5% in 2D, 3% in 3D 
● from 16s to 0.13s for 2000 simulations in 2D 

from 292s to 1.2s for 5 simulations in 3D 

BUT 
● No scaling study 
● Linear model 
● Fixed grid/mesh 

Accelerating simulations



Learning sub-scale phenomena 
● Global climate modeling  

○ 2° horizontal resolution, 30 altitude levels 
○ 30mn time step 

● needs to solve CRMs (Cloud Resolving Models) 
○ turbulence + cloud convection + ...  
○ in each column (4km-wide),  
○ at each time-step (20s) 

● Train a DNN  
● Inputs(z): temperature, humidity, wind profile, … (→ dim 94) 
● Outputs(z): heating, moistening, radiative fluxes, … (→ dim 65) 
● 9-layers fully connected NN, 256 neurons/layer 
● Training data: one-year SPCAM simulations - 140M example 

Accelerating simulations

S. Rasp et al. “Deep learning to represent sub-grid processes in climate models”. PNAS 2018



Learning sub-scale phenomena (2) 
Results 

● 20x speedup 
● Means and variability OK 

● Good conservation of energy (though not prescribed) 
● Good interpolation between extreme values of train data 
● Poor extrapolation beyond train data 

BUT 
● Learning from observations only? Too few available

Accelerating simulations

S. Rasp et al. “Deep learning to represent sub-grid processes in climate models”. PNAS 2018



Need patient-specific real-time simulation of laparoscopy

● Liver is hyper viscoelastic and anisotropic
● Several complex PDEs for soft tissues

○ anyway an approximation
● Material identification
● Patient-specific geometry

○ Not a big issue, but time consuming
● Boundary conditions are essential

○ but difficult to obtain from images

● Need less than 3mm error
● in less than 50ms per image

Soft Body Deformation  

A. Mendizabal, J-N. Brunet and S. Cotin - Physics-based Deep Neural Network for Augmented Reality during Liver Surgery, MICCAI 2019.



Bottleneck: real-time simulation

                 Replace FEM simulation by a Deep Network
                 Supervised learning (regression) of simulation results

Soft Body Deformation  

A. Mendizabal, J-N. Brunet and S. Cotin - Physics-based Deep Neural Network for Augmented Reality during Liver Surgery, MICCAI 2019.



Inspired by the U-net architecture* for image segmentation

Soft Body Deformation  

 (*) Olaf Ronneberger, Philipp Fischer, Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. MICCAI 2015.

● Fully convolutional network
● Encoding:   

transforms input to reduced space
● Decoding:  

expands to original dimensions
● # steps and # channels control the 

accuracy. 
● Each convolution kernel isolates 

different characteristics of u

Very similar to POD approach!



Results

Soft Body Deformation  

A. Mendizabal, J-N. Brunet and S. Cotin - Physics-based Deep Neural Network for Augmented Reality during Liver Surgery, MICCAI 2019.
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Data-driven solution of PDEs 

● Define  

● and minimize  

●                          initial and boundary training data  
●                          collocation training points 

Physics Informed Deep Learning

M. Raissi. “Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations.” ArXiv 1711.1056. 



Automatic differentiation 

● Thanks to Differentiable Programming     
● e.g., in TensorFlow 

Physics Informed Deep Learning

M. Raissi. “Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations.” ArXiv 1711.1056. 



A meshless approach
Physics Informed Deep Learning

M. Raissi. “Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations.” ArXiv 1711.1056. 



Burger’s equation 
Physics Informed Deep Learning

M. Raissi. “Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations.” ArXiv 1711.1056. 

Data: training boundary points X + 10000 collocation points (not shown).  
Predicted dynamics, MSE = 6.7 10-4.



Burger’s equation 

                     Exact vs predicted

Physics Informed Deep Learning

M. Raissi. “Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations.” ArXiv 1711.1056. 

Influence of amount of 
data on accuracy
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● Original motivations: High-dim PDEs, parameterized PDEs 
● Context: parabolic PDEs 

● Baseline: minimize 

● Convergence: the solution learned by the 1-layer NN converges toward the 
solution of the PDF when #neurons ⇾ ∞ 

● Derivatives: all 𝝏t and 𝝏x can be computed analytically 
● Specific trick to avoid computing all 2nd order derivatives 

○ based on Monte-Carlo approximation 
○ but introduces bias and variance

Deep Galerkin Method

J. Sirignano,K. Spiliopoulos. “DGM: A deep learning algorithm for solving partial differential equations”. J. Comp. Physics 375:1339-1364, 2018



The Neural Network 
● Inputs: x = (t,x) 
● Outputs: f(x),  
● Loss: for (tn,xn):  

○ no regularization, “infinite” sample set 
● Architecture: inspired by LSTM topology 

○ L hidden layers (typically 4),  
■ 4 sub-layers per layer,  
■ x fed into all sublayers 

○ M units per layer (typically 50) 
○ tanh transfer functions 

● Parallel asynchronous stochastic gradient on 5 GPUs 
● 100000 iterations, 1000 samples on each GPU per iter. 

○ 500 M points altogether 
● Adam optimizer, with complex ad hoc schedule to decrease the learning rate 

Deep Galerkin Method

J. Sirignano,K. Spiliopoulos. “DGM: A deep learning algorithm for solving partial differential equations”. J. Comp. Physics 375:1339-1364, 2018



Results 

● “American Options” PDE  
with semi-analytic solution 

● Parameterized Burger equation 
○ Inputs: (t, x, a, b, α, υ) 
○ Results: Indistinguishable from  

the finite differences solutions

Deep Galerkin Method: Results

J. Sirignano,K. Spiliopoulos. “DGM: A deep learning algorithm for solving partial differential equations”. J. Comp. Physics 375:1339-1364, 2018

● … without analytical solutions: 
○ theoretical bounds 
○ results are within bounds
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● Original motivations: learn PDEs improve flexibilty 
● Context: 2D convection-diffusion equation 

● Baseline: minimize 

● Idea: use convolution neural network to learn derivative operators 

● Specific trick to constrain convolution operation 
○ filters constrained using their associate moment matrices 
○ multiple filters to approximate a given differential operator

PDE-NET

Long, Zichao, et al. "PDE-net: Learning PDEs from data." arXiv preprint arXiv:1710.09668 (2017)



PDE-NET

Long, Zichao, et al. "PDE-net: Learning PDEs from data." arXiv preprint arXiv:1710.09668 (2017)

 block implementationδt

Multiple steps procedure



PDE-NET

Long, Zichao, et al. "PDE-net: Learning PDEs from data." arXiv preprint arXiv:1710.09668 (2017)

True

Prediction

● 50 x 50 mesh 
● 7 x 7 filters 
● 1,2k parameters in each -blockδt
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Coupling forward and inverse problems 

● Generalized Poisson equation: 

with   
● Forward problem: find u knowing a, b, c 
● Inverse problem: find a (b, c) knowing a few measurements of u 
● Use two neural networks, one for u and one for a 
● input x, standard fully connected 
● Losses (meshless approach):  

Forward  
Inverse 

Inverse problems

L. Bar et al., “Unsupervised Deep Learning Algorithm for PDE-based Forward and Inverse Problem”. ArXiv, april 2019.



Coupling forward and inverse problems: results 
● Example: Electrical Impedance Tomography (2D), Poisson equation  
● Data (forward): random points on Ω for σ, on ∂Ω for u0 
● 4 layers (26, 26, 26, 10), Adam, bs 1000, decay learning rate 
● Discretized loss: 

(Forward) 

● Parameters: NS=45000, Nb=1200, λ=0.01, α=10-8, K=40, µ=10-2 

● Excellent results. In particular 
MSE = (1.72 10−3, 1.22 10-3, 2.35 10−4) for 1, 2 or 3 boundary cond. 

Inverse problems

L. Bar et al., “Unsupervised Deep Learning Algorithm for PDE-based Forward and Inverse Problem”. ArXiv, april 2019.



Coupling forward and inverse problems: results 

● Example: Electrical Impedance Tomography (2D), Poisson equation 
● Data (inverse): random points on Ω for u, on ∂Ω for u0 and σ0 
● Discretized loss: 

(Inverse) 

● Parameters: same, except β=10-3, µ=10-2 

● MSE = (1.72 10−3, 1.22 10-3, 2.35 10−4) with 1, 2 or 3 measurements

Inverse problems

L. Bar et al., “Unsupervised Deep Learning Algorithm for PDE-based Forward and Inverse Problem”. ArXiv, april 2019.
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Dictionary-based Learning 

● Sparse optimisation from a set of primitives 

● Pros: intelligibility 
● Cons:  

○ Numerical differentiation is unstable 
○ Completeness of the set of primitives 

Data-driven Parametric Model Identification

S.L. Brunton, J. L. Proctor, and J. N. Kutz. “Discovering governing equations from data by sparse identification of nonlinear 
dynamical systems” PNAS, 113(15):3932–3937, 2016 



Data-driven Parametric Model Identification

Rudy, Samuel H., et al. "Data-driven discovery of partial differential equations." Science Advances 3.4 (2017): e1602614. 



Genetic Programming 

● An Evolutionary Algorithm 
● evolving tree structures 
● representing programs, functions, … 

● Can explore huge unstructured search spaces  
● and discover innovative solutions 
● without a template 

Data-driven Free-form Model Identification



                  Identification of 1-D rheological models 

● Data: Strain measures at discrete time steps  

● Use of GP for rheological models 

Difficulties 
● Need an interpreter of rheological models 
● Computational cost: gradually take into account the experiments  

Data-driven Free-form Model Identification

M.Schoenauer, M.Sebag, F.Jouve, B.Lamy, H.Maitournam. “Evolutionary identification of macro-mechanical models”. in Advances in Genetic 
Programming II, MIT Press, pp.467-488, 1996. 

Data-driven Free-form Model Identification



                  Identification of 1-D rheological models: Results 

● → Active Learning: lack of creep in the experiment 
● Also, identification of 3D hyper-elastic law                   physical constraints issues

Data-driven Free-form Model Identification

M.Schoenauer, M.Sebag, F.Jouve, B.Lamy, H.Maitournam. “Evolutionary identification of macro-mechanical models”. in Advances in Genetic 
Programming II, MIT Press, pp.467-488, 1996. 

Frequently identified model with its “experimental” curve

Data-driven Free-form Model Identification



Learning Dynamical Systems with Genetic Programming 

● Direct identification of dynamical systems from time series  
● with several computational tricks 

○ Partitioning the variables 
○ Snipping (anti-bloat) 
○ Active learning (unrealistic) 

● Good results on synthetic and  
real systems 

● but many trials were unsuccessful 

Data-driven Free-form Model Identification

J. Bongard and H. Lipson “Automated reverse engineering of nonlinear dynamical systems” PNAS, 104(24):9943–9948, 2007.

Data-driven Free-form Model Identification



● Identifies invariants 
● from videos of experiments 

● To avoid trivial invariants 
○ check partial derivatives 
○ for all pairs of variables 
○ w.r.t. numerical derivatives 

● Generate Pareto front 
○ accuracy vs parsimony 

● Keep best-looking equations :-)

Data-driven Free-form Model Identification

M. Schmidt and H. Lipson “Distilling free-form natural laws from experimental data” Science, 324(5923):81–85, 2009. 



● Impressive results 
● Units of constants by varying 

the parameters (e.g., mass) 

● But requires human knowledge 
○ Choice of variables 
○ Choice of operators 
○ Choice of Pareto solution 

● and GP poorly scales up  

Data-driven Free-form Model Identification

M. Schmidt and H. Lipson “Distilling free-form natural laws from experimental data” Science, 324(5923):81–85, 2009. 
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Identifying both the model and the solution 

         from 

Data-driven Black-box Model Identification

M. Raissi. “Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations”, JMLR 19:1-24, 2018 



Identifying both the model and the solution 

           to

Data-driven Black-box Model Identification

M. Raissi. “Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations”, JMLR 19:1-24, 2018 



Identifying both the model and the solution (2) 

● A Deep Network for both u and 𐌽 

● Deduced DN for  

● Sample (many) data points (ti, xi, ui) i=1,..., N 

● Goal: minimize  

Data-driven Model Identification

M. Raissi. “Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations”, JMLR 19:1-24, 2018 



Identifying both the model and the solution (3) 

Example: Burgers’ equation  

● DNu: 5 layers, 50 neurons/layer, sine activation function 
● DN𐌽: 2 layers, 100 neurons/layer, sine a.f. 

● “Exact” solution from 4th order Runge-Kutta, time step 10-4  
● Examples: 201 snapshots in time 
● Train set: 10000 random points for t ∊ [0,6.67]  
● Tested for t ∊ [6.67,10]

Data-driven Model Identification

M. Raissi. “Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations”, JMLR 19:1-24, 2018 



Assessing the learned dynamics 

Data-driven Model Identification

M. Raissi. “Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations”, JMLR19:1-24, 2018 

On the learned equation with a different initial condition



Assessing the learned dynamics (2) 

Data-driven Model Identification

M. Raissi. “Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations”, JMLR19:1-24, 2018 

On the learned equationwith a different initial condition



From PDE to NNs
● ResNet module:  is progressively modified by the residual  x f(x, θ)

for small  this is the forward 
Euler scheme

h

● ODEnet:
Optimization problem: 

 s.t.  

use Lagrangian optimization 

min
θ

L(F(x, θ), y) ·x = F(x(t), θ)

L(F(x(T ), θ), y) − ∫
T

0
λ(t)( ·x − F(x(t), θ))

Szegedy, Christian, et al. "Inception-v4, inception-resnet and the impact of residual connections on learning." T2017. 

Chen, Tian Qi, et al. "Neural ordinary differential equations." Advances in neural information processing systems. 2018.



● Some impressive results (even if on small regular problems) 
○ Synergy with HPC 
○ Surrogate modeling 
○ Meshless simulations 

● Still underexploited 
○ The generative power of DNNs (GANs) 
○ Transfer learning and domain adaptation (DANNs) 
○ Graph networks  

● Open issues 
○ Where do the data come from?  
○ How noisy are they? 
○ Small data: PDEs as constraints? 

How to hybridize Machine Learning and Mechanistic Knowledge?

Conclusions


