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Al/Big Data is (I?«¢og) Miachine Learning
What has changed :
e Data Deluge avent of WWW
e~ Moore law or.continuation

e New algorithms or better understanding of old ones
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Learning from examples recognition tasks
"o Supervised all examples are labélled

e Semi-supervised some examples are labelled

e Unsupervised no example is labelled

Reinforcement Learning sequential decision making
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Supervised Learning
A toy case-study

e One example = (x4,X,, Y), where is the (red or blue here)
e Goal: finda f(x4,X,) that separates the labels
e allowing to correctly label future unlabelled example from (x4,X,)



Supervised Learning

A zoology of models
Linear and Polynomial
Bayésiens Networks
Decision trees and Random Forests
Support Vector Machine (kernel machines)
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Deep Supervised Learning

Learning Phase
Gradient aka
e Present the examples 1 by 1

o or mini-batch by mini-batch

° pass: Compute the
e-g-, L = Z |y(X1’X2) = NN(X1,X2)|2
° pass: Compute VL (chain rule)

e Modify the weights w; from V| L

to decrease of the loss
e Loop

Recognition Phase aka Inference
Present an unlabelled example, the output of the network is the predicted label
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End-to-end Learning

Features and Classifier are learned together

CAT
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Deep Learning

Better than human learning

ILSVRC Top 5 Error on ImageNet
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Deep Learning

Outstanding performances ... in well-focused domains

e Supervised learning
o Image/videos
o NLP / translation
e Reinforcement/sequential learning
o Games (AlphaZero)
o Dynamical systems (Fluid/Structure)
e Representation learning
o generative models (GANS)
o domain transfer (DANNS)
e Toward Differentiable Programming

many successes, and fun applications, but



DL configuration: more of an art

A very high number of hyperparameters to tune

Cost function
Topology of the network
o nblayers, nb neurons, residual or not residual, ...
Activation functions (sigmoid, tanh, ReLU, ...)
Batch size (and curriculum)
Optimizer (SGD, Momentum, Adam, Adagrad, ...)
o and its parameters (e.g., learning rate)
Initialization
Dropout, Batch Normalisation, ...

Empirical rules, or meta-optimization (meta-costly)
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PDEs and ML

But does “The Data Deluge Make the Scientific Method Obsolete™(*)?

The answer is of course “no” ...

This talk: survey of synergies between Machine Learning and PDE solving.

(*) C. Anderson (2008). “The End of Theory”, Wired Magazine. url: https://
www.wired.com/2008/06/pb-theory/.



ML and PDEs: Agenda

Simulation is fine, but huge output data

o DL for Data Analytics (Climate, Particle Physics, ...)
Simulation is fine, but

o DL as surrogate model (whole simulation, or sub-components)
o Physic Informed Deep Learning

o Deep Galerkin Method (high dimensions)

o PDE-NET

Inverse problems / calibration

o Often ill-posed

Mechanistic model is unknown

o Learn an analytical model from data

o Learn a black-box model from data
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Data Analytics for Simulation Results

Experiments, either real or simulated, produce loads of data
o Manual interpretation not possible any more
Particle physics experiments: several challenges _‘ —

The Higgs boson Challenge (2014)
Largest Kaggle challenge (1785 entries)
< 100 Boson events per year (1010 events)
DL winner ... unpractical for physicists

The TrackML challenge (2018-2019)
10-100 Billion events/year
Reconstruct particle trajectories
from sparse point-wise traces
Winner is not a machine learner

2012-05-30 20:31:28 UTC




Deep Learning for Climate Analytics

Recognize forthcoming Tropical Cyclones in simulation outputs

Public Data: Community Atmosphere Model (CAMS)

16 variables

1152x768 spatial grid, 3 hours time step

100 years are available, ~63000 hires samples

labeled with supervised expert heuristics

3 classes: TCs (O 1%) Atmospherlc Rivers (1 /%) and Background

T. Kurth et al.. “Exascale Deep Learnina for Climate Analvtics”. Super Computing 2018
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Data Analytics for Simulation Results

e Analysis of simulation results can also be used as feedback to the
simulation itself
o to detect numerical instabilities before they take place
o and take appropriate counter-measures (e.g., locally modify
diffusion parameter, adaptative discretization).
BUT

e ... need some expert labeling
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Accelerating simulations

A basic example: Regression of the complete solution

e Poisson equation: V - (¢(x)V(x)) = —p(x) , x e D
Plp =0

e Inputs: permittivity € and source distribution p
e Outputs: dielectric potential ¢

e Finite differences on a fixed Cartesian grid

e Inputs assumed constant in each pixel/voxel f\

e “Standard” CNN architecture @jﬁl D ' D | Uﬁ' Uﬁ y

e Regularized MSE loss 10g10(9) — logio(@) P+ o= 3 w?. I
W. Tang et al., "Study on a Poisson's equation solver based on deep learning technique," |/ D'—[ D‘—|/ U

2017 IEEE Electrical Design of Advanced Packaging and Systems Symp. (EDAPS), 2017.






Accelerating simulations

Learning sub-scale phenomena

e Global climate modeling

o 2° horizontal resolution, 30 altitude levels

o 30mn time step
e needs to solve CRMs (Cloud Resolving Models)

o turbulence + cloud convection + ...

o in each column (4km-wide),

o at each time-step (20s)

Train a DNN
Inputs(z): temperature, humidity, wind profile, ... (— dim 94)
Outputs(z): heating, moistening, radiative fluxes, ... (— dim 65)
O-layers fully connected NN, 256 neurons/layer

Training data: one-year SPCAM simulations - 140M example

S. Rasp et al. “Deep learning to represent sub-grid processes in climate models”. PNAS 2018



Accelerating simulations

Learning sub-scale phenomena (2)

CTRLCAM

Results A
20x speedup _ 20
Means and variability OK $ I l

1
o N B O w

Good conservation of energy (though not p're's'cri'bed)' _—

Good interpolation between extreme values of train data
Poor extrapolation beyond train data

BUT

Learning from observations only? Too few available

S. Rasp et al. “Deep learning to represent sub-grid processes in climate models”. PNAS 2018
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Soft Body Deformation

Need patient-specific real-time simulation of laparoscopy

e Liver is hyper viscoelastic and anisotropic
e Several complex PDEs for soft tissues

O anyway an approximation
e Material identification
e Patient-specific geometry

o Not a big issue, but time consuming
e Boundary conditions are essential

o but difficult to obtain from images

e Need less than 3mm error
e in less than 50ms per image

A. Mendizabal, J-N. Brunet and S. Cotin - Physics-based Deep Neural Network for Augmented Reality during Liver Surgery, MICCAI 2019.



Deep input tensor (3xn, xn, xn) for contact forces

network
output tensor (3xn_x n xn, ) for displacements

. l N
Inolnﬁz}l Ih(fn) —u, Training data: N FEM solutions
n=

N
3D grid of resolution \ weights of h {(fn 9“n)}n=l
n X n, Xn,
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Soft Body Deformation

Results

900 ms

/
solution |

8.9% relative error 3.4% relative error 3.2% relative error

FEM
solution

Differences below 10%, computations 300x faster

A. Mendizabal, J-N. Brunet and S. Cotin - Physics-based Deep Neural Network for Augmented Reality during Liver Surgery, MICCAI 2019.
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def u(t, x):
u = neural_net(tf.concat([t,x],1), weights, biases)
return u

def f(t, x):
u = u(t, x)

u_t = tf.gradients(u, t)[0]

u_x = tf.gradients(u, x) [0]

u_xx = tf.gradients(u_x, x) [0]

f =u_t + uwku_x - (0.01/tf.pi)*u_xx
return f







up + uuy — (0.01/m)uy, =0, x€[—1,1],
u(0,x) = — sin(mx),
u(t,—1) =wu(t,1) =0,
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Oru(t, z) + Lu(t,z) =0, (t,z) € [0,T] x Q
u(0, ) = up(x), x €
u(t,z) = g(t,x), xz € [0,T] x 09,

10:f + L1113 0.17%0 + I1f = 9ll3 1017 %00 + 170, ) = uoll3 o



Deep Galerkin Method

The Neural Network
e Inputs: x = (t,x) | | '
Outputs: f(x), (2 (b0 00) + £t 0) )+ (£ 20300) 9 2)) + ( FO,100300) — wown) )
e Loss: for (t,X,):

o no regularization, “infinite” sample set
e Architecture: inspired by LSTM topology
o L hidden layers (typically 4),
m 4 sub-layers per layer,
m X fed into all sublayers
o M units per layer (typically 50)
o tanh transfer functions
e Parallel asynchronous stochastic gradient on 5 GPUs
e 100000 iterations, 1000 samples on each GPU per iter.
o 500 M points altogether
e Adam optimizer, with complex ad hoc schedule to decrease the learning rate

J Sirianano K Soilionoulos “DGM: A deep learnina alaorithm for solvina nartial differential eauations” .J Comp Phvsics 375:1339-1364 2018



Number of dimensions Error
3

Average of x

ou_ P on
ot dz? oz’
u(t,z =0) = a,
u(t,x = 1) = b,
u(t =0,z) = g(x), z€][0,1].

(t,z) € [0,1] x [0,1],
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L= Z l,;j,where lgj = ||uj(t¢+n, ) - &j(ti-i-na )“g

2¥)
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F(% ¥, Do, Dyp ... ) it = Dou+8t -F(x, 3, Dogt, Dy 4, ... .0}

2nd &t — block nth 5t — block

Figure 1: The schematic diagram of a é¢-block.

Figure 2: The schematic diagram of the PDE-Net: multiple d¢-blocks.
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Inverse problems

Coupling forward and inverse problems

Lu =0, x € ()

e Generalized Poisson equation:
with

Forward problem: find u knowing a, b, c

Inverse problem: find a (b, c) knowing a few measurements of u
Use two neural networks, one for u and one for a

input x, standard fully connected

Losses (meshless approach):

Forward  7(v) = M Lull3 + pll Lulloc + [lu — uoll1,00 + RT (u)

INVErse 7(a) = \|Cu|? + pl|Lullo + [l — 0100 + R (a*)

u(xz) = ug(xz), x € 9.

Lu = ('),('(1"’('.:{)(')‘,11) + ¥ (x )Oju+c(z)u, 1,7=1,...,

L. Bar et al., “Unsupervised Deep Learning Algorithm for PDE-based Forward and Inverse Problem”. ArXiv, april 2019.



Inverse problems

Coupling forward and inverse problems: results

Example: Electrical Impedance Tomography (2D), Poisson equation
Data (forward): random points on Q for o, on 9Q for u,

4 layers (26, 26, 26, 10), Adam, bs 1000, decay learning rate
Discretized loss: ) ‘
(Forward) Flur) = Z e _z m§|£, ! -

Ny

1

Ny
b b—1

u(xp) —uplxp)| + “H”'u‘ :;

e Parameters: Ng=45000, N,=1200, A=0.01, a=10-8, K=40, p=10-2
e Excellent results. In particular
MSE = (1.72 10-3, 1.22 10-3, 2.35 10-4) for 1, 2 or 3 boundary cond.

L. Bar et al., “Unsupervised Deep Learning Algorithm for PDE-based Forward and Inverse Problem”. ArXiv, april 2019.
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ut = N(ta Ly, Uz, Ugg, - - )

2 3
Ntz u, Uy Uy - - - o0 + a1 0u + a2 ou” + azou’ +
2
Qp1Ux + a1 Uty + g utug 4 azudu, +

2 3
Q) 2Uzz + 1 2UUzy + Q22U Ugy + 32U Ugy +

2 3
@) 3Uzzx + Q] 3UUzry + Q2 3U Ugry + Q33U Ugzax



PDE_ [Fem _[Frror (no noke noke) __|Discretization

ue + 6utiz + Uzzz =0 1%+0.2%, 7%=+5% 2€[—30, 30], n=512, t€[0, 20], m=201

Us + ULy — EUps =0 0.15%+0.06%,0.8%+0.6% |ze[—8, 8], n=256, t[0, 10}, m=101

4

iup + Suzs + |ulfu=0 0.05%+0.01%, 3% +1% z€[—5, 5], n=512, t€[0, 7], m=501

Us + Ul + e + Usgee =0 |1.3%£1.3%, T0%+27% z€[0, 100], n=1024, t€[0, 100], m=251

us = 0. 1V2u +A(A)u — w(A)v
ve =01V + w(A)u+ A(A)v_|0.02% £ 0.01%, 3.8% + 2.4%| , ye[—10, 10], n=256, t€[0, 10], m=201
A’ =u? 40 w=—BA% A\=1—-A2 subsample 1.14%

Nav1er Stokes |w; + (u - V)w = 1% +0.2% , 7% + 6% z€(0, 9], n>=449, y€(0, 4], n,=199,
te[0, 30], m=151, subsample 2.22%







Osim(t) = F(e(t), é(t); ky, ko, ks, 1, 05)







Single pendulum
Target do/dt = ©
dw/dt = —9.8sin(6)
Best model db/dt = w
dw/dt = —9.79987sin(6)
Median model d/dt = w
dw/dt = —9.8682sin(6)

Lotka-Volterra interspecific competition between two species
Target dx/dt = 3x — 2xy —x2
dy/dt = 2y —xy — y?
Best model dx/dt = 3.0014x — 2xy — x?
dy/dt = 2.0001y — xy — y?
Median model dx/dt = 2.9979x — 2.0016xy—x?
dy/dt = 1.999y — 0.917xy—1.005)?




f=z+9.8-sin(x)
f=0.5-y"-9.8-cos(x)

© When predictive ability
reaches sufficient

accuracy, return the most
parsimonious equations

3

[ =(x-112)-cos(y)
S =091-exp(y/z)
f=05-y"-9.8-cos(x)

a : Ax

NERY ... VRt

l! :—{ Candidate ay

qu a'tl(r,.y,) Equations _.1 =_q q
ax!(r..r) ox ay

numerical partial derivatives © oerive symbolic partil

derivatives of pairs of variables
(2). Select best equations. for each candidate function

o Compare predicted
partial derivatives (4) with




114.28V* + 692.32x°

Hamiltonian

v — 6.04x
Lagrangian
a—0.008v - 6.02x

Equation of motion

-142.19x; — 74.65x5 + 0.12x,> —
1.89x1x> — 1.51x,> — 0.49v,> +
0.41v,v, — 0.082v,>
Lagrangian

1.37-w” + 3.29-cos(6)
Lagrangian

2.71a + 0.054e — 3.54sin(6)

Equation of motion

(x—77.72)* + (v — 106.48)

Circular manifold

* +0.320," -
124.13cos(0,) — 46.82cos(0,) +
0.82(0|(0ch5(9| == 02)

Hamiltonian
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Data-driven Model Identification
|dentifying both the model and the solution (2)

wg = N(t, z, u, Uy, Ugsy, . ..)

e A Deep Network for both u and N

e Deduced DN for fi=wu —N(t,z,u, ty, Uy, . ..)
e Sample (many) data points (t, x;, u;) i=1,..., N
e (Goal: minimize N

> (Ju(t, 2') — > + | f(¢, 2Y)[?)

1=1

M Raicci “Deen Hidden Phveice Modele: Deen | earnina of Nonlinear Partial Differential Fariatione” IMIR 10:1-24 2018



Data-driven Model |dentification
|ldentifying both the model and the solution (3)

Example: Burgers’ equation ug = —utly + 0.1z,

e DN, 5 layers, 50 neurons/layer, sine activation function
e DN,: 2 layers, 100 neurons/layer, sine a.f.

“Exact” solution from 4t order Runge-Kutta, time step 10-4
Examples: 201 snapshots in time

Train set: 10000 random points for t € [0,6.67]

Tested for t € [6.67,10]

Clean data | 1% noise | 2% noise | 5% noise
Relative L?-error 1.78e-03 2.64e-(2 1.09e-01 4.56e-01

M. Raissi. “Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations”, JMLR 19:1-24, 2018



Exact Dynamics Learned Dynamics

Exact Dynamics




Exact Dynamics Learned Dynamics

Exact Dynamics




Xer1 = Xe + hf (xe, 6¢)

Xey1 = X¢ + f(xt, 6¢)

Residual Network ODE Network

-5 5
Input/Hidden/Output Input/Hidden/Output




Conclusions

e Some impressive results (even if on small regular problems)
o Synergy with HPC
o Surrogate modeling
o Meshless simulations

e Still underexploited
o The generative power of DNNs (GANS)
o Transfer learning and domain adaptation (DANNSs)
o Graph networks

e Open issues
o Where do the data come from?
o How noisy are they?
o Small data: PDEs as constraints?



