Toward hybrid NWP-AI system for precipitation nowcasting

Shigenori Otsuka, Yasumitsu Maejima, and Takemasa Miyoshi (RIKEN Center for Computational Science, Japan)

Acknowledgment:

M. Ohhigashi, S. Kotsuki, K. Kondo, G. Tuerhong, Y. Ishikawa, J. Ruiz, S. Satoh, T. Ushio, R. Kikuchi, Y. Kitano, Y. Taniguchi, MTI Ltd. P. Tandeo, V. P. Huynh

Background

- Localized convective rain
 - Rapid development in 10 minutes
 - Needs for quick prediction
- Phased Array Weather Radar
 - Dense and frequent observations
 - 3D volume scans every 10-30 seconds
 - Range resolution of 100 m, 100 elevation angles
 - Operation started in 2012 at Osaka University

→ We developed ultra-rapid-update nowcast

Flash flood in Kobe on July 28, 2008

Background

 Nowcast outperforms dynamically-based forecast in short range precipitation forecast

Background

- Nowcasting = Now + forecasting
- Four types
 - Numerical weather prediction
 - Kinematic prediction (e.g., motion vector)
 - Statistical prediction (e.g., neural network)
 - Conceptual modelling (e.g., 1D convection model)

Two precipitation nowcasting systems at RIKEN (https://weather.riken.jp)

Global precipitation nowcast (hourly updated)

GSMaP RIKEN nowcast (GSMaP_RNC)

Global precipitation nowcast

Init: 2018/05/25 02Z

Warnings/Advisories (Japan

These two share the main part of the program codes Pha

Phased-Array Weather Radar nowcast (updated every 30 seconds)

Phased-Array Weather Radar 3D nowcast

(NICT)

https://weather.riken.jp/

GSMaP RIKEN Nowcast

GSMaP RIKEN nowcast (GSMaP_RNC)

Global Satellite Mapping

0 h >> Animate of Precipitation (GSMaP) by Japan aerospace exploration agency (JAXA) **GPM** Constellation Status Suomi NPP Google MetOp B/C (NASA/NOAA GPM Core Observatory (EUMETSAT) (NASA/JAXA) TRMM -20 0.1 0.5 2 5 10 20 50 mm/h 1 Warnings/Advisories (Japan) (NASA/JAXA) Megha-Tropiques (CNES/ISRO)

Input for nowcasting: GSMaP Near-Real-Time product

Methodology of kinematic nowcasting

Method of kinematic nowcasting

- 3D space-time extrapolation (advection)
- Pure image processing (no physics considered)

Estimating motion vectors by Data Assimilation

Motivation

- Motion vectors tend to be noisy due to observation errors
- Data assimilation may help reduce the noise

Methods

- Noisy motion vectors
- Local Ensemble Transform Kalman Filter (LETKF)
 - Used for GSMaP RIKEN Nowcast
- Single-point temporal filtering
 - Used for PAWR 3D Nowcast

(Otsuka, Kotsuki, and Miyoshi, 2016)

Methodology of nowcasting with machine learning

Machine learning with the Convolutional LSTM

- Phased Array started its operation in 2012
- High-frequency, high-resolution data accumulated
 - 30-sec, 100-m-resolution, 100-elevations, 300-azimuth
- \rightarrow Data driven prediction
- Long Short-Term Memory is suitable for sequence data (LSTM, Hochreiter & Schmidhuber 1997)
- Convolution is used to utilize spatial information (Shi et al. 2015)

Conv-LSTM by Shi et al. (2015) Extended to three-dimensional radar data

Supervised Learning

ConvLSTM

- Gate operations in LSTM become convolution
- Weights in LSTM become tensors of kernel size x kernel size x input channels x output channels

Input $i_t = \sigma(W_{xi} * \mathcal{X}_t + W_{hi} * \mathcal{H}_{t-1} + W_{ci} \circ \mathcal{C}_{t-1} + b_i)$ Forget $f_t = \sigma(W_{xf} * \mathcal{X}_t + W_{hf} * \mathcal{H}_{t-1} + W_{cf} \circ \mathcal{C}_{t-1} + b_f)$ Memorize $\mathcal{C}_t = f_t \circ \mathcal{C}_{t-1} + i_t \circ \tanh(W_{xc} * \mathcal{X}_t + W_{hc} * \mathcal{H}_{t-1} + b_c)$ Output $o_t = \sigma(W_{xo} * \mathcal{X}_t + W_{ho} * \mathcal{H}_{t-1} + W_{co} \circ \mathcal{C}_t + b_o)$ Hidden state $\mathcal{H}_t = o_t \circ \tanh(\mathcal{C}_t)$ Shi et al. (2015) *: convolution, \circ : Hadamard product

An example of filters trained by ConvLSTM

b

NAMES OF TAXABLE PARTY. A DESCRIPTION OF A DESC

CONTRACTOR PROPERTY OF Party of the second second second **CIVERINACIONALINA**

 \mathbf{O}

THE REAL PROPERTY AND INCOME. STREET, SALES THE REPORT OF HERE BOARD BATT

Ŗ. ġ. 8

NAME OF CONTRACT æ E.

STATISTICS OF STATES NAMES OF TAXABLE PARTY.

> THE OWNER WATCHING TO BE A DECIDENT PLOCED IN LOCAL DIVISION

NUMBER OF STREET, STRE The Part of the Pa NUMBER OF COMPACT

2

ConvLSTM

• Encoder-Decoder with 2 LSTM layers

ConvLSTM

• Encoder-Decoder with 2 LSTM layers

Extension to 3D radar data

- 9 vertical levels from 1.5 km to 3.5 km are used
 - Every 0.25 km
- Vertical levels are treated as "channels" of input images

Region of Interest (ROI) extraction

- Extracting areas including rainy pixels
- Increasing the effective sample size
- Two approaches: K-means / flat

ROI merge

• Predictions for each ROI are merged to reconstruct the entire domain

Changes from the original ConvLSTM

	Shi et.al. (2015)	Huynh & Tandeo	Ohhigashi & Otsuka
Data	2D radar images	3D radar data	3D radar data
Interval	6 minutes	30 seconds	30 seconds
ROI extraction	K-means	K-means	Flat ROI extraction
ROI size	100 x 100 transformed to 50 x 50 x 4	61 x 61 x 9	60 x 60 x 9
Filtering	Disk filter	No-filter	No-filter
Input	Past 5 steps	Past 6 steps	Past 6 steps Forecast 20 steps
Output	Future 15 steps	Future 5 steps	Future 20 steps
ROI merge	No	No	Flat ROI merge
Framework	Theano	Theano	Chainer
Optimizer		AdaDelta, learning rate: 10 ⁻⁴	Adam, learning rate: optimized later
Convolution	3 x 3, 64 features	3 x 3, 32 features	3 x 3, optimized later

Comparison of kinematic nowcasting and machine learning

Computational domain and specification of kinematic nowcast

- Three-dimensional nowcast since May 2017
- NICT Kobe PAWR is used

Resolution	250 m (Hor. / Ver.)	
Grid points	321 x 321 x 57	
Update Freq.	30 seconds	
Motion vector	TREC (fractional)	
Quality control	Provided by NICT	
Quality control of motion vector	Correlation <i>r</i> , range of <i>r</i> , sample size for <i>r</i> , solid body rot.	
Temporal filter for motion vector	Obs.:Fcst = 1:10 weighted average	
Forecast length	3D: 5 minutes + 2D: 10 minutes	

Test case

- Data:
 31 May &
 26-27 July, 2018
- Box size:
 61 x 61 x 9 pixels
 - 6 steps for input,
 5 steps for forecast
- 3,500 samples for training
 - K-means to extract patches
- 300 samples for test

(Work with Mr. Viet Phi Huynh and Prof. Pierre Tandeo)

0

Prediction by ConvLSTM3D

(Work with Mr. Viet Phi Huynh and Prof. Pierre Tandeo)

Prediction by ConvLSTM3D

(Work with Mr. Viet Phi Huynh and Prof. Pierre Tandeo)

ConvLSTM3D real-time run

- Training with 97,935 rainy samples during April-May 2018
 - Training: 91,308
 - Test: 6,627
- Real-time run
 - Since June 2019
 - 2.5-min forecast
 - Inference over small areas, finally merged

Example: 2019/4/10 (full domain)

Conv-LSTM by Shi et al. (2015) Extended to three-dimensional radar data

Preliminary results

- Training:
 5,852 samples
 - 2019/6/10 16:30:00
 17:49:30
- Test:
 1,101 samples
 - 2019/6/10 17:50:00
 17:59:30

Preliminary results

- Training:
 5,852 samples
 - 2019/6/10 16:30:00
 17:49:30
- Test:
 1,101 samples
 - 2019/6/10 17:50:00
 17:59:30

Preliminary results

Future direction: Fusing ML+DA+Simulation

Summary

- Phased-Array Weather Radar 3D nowcasting
 - TREC-based algorithm + Data assimilation
 - Operated since July 2017
- Phased-Array Weather Radar + Machine Learning
 - ConvLSTM3D captured rapid change of radar reflectivity
 - Difficult for kinematic nowcasting
 - Ingesting kinematic nowcast / numerical weather prediction into ConvLSTM was tested
 - Future
 - More samples, training for different seasons, online training