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Problem statement

General context : ocean dynamics

and Applications_

Often equations are ol
o > Data-driven dynamical modeling
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My thesis as an optimization problem

Optimize
How to derive a data driven model from a collection of observations ?
Which data driven formulation to use ?
How to evaluate the performances of a data driven model
How to use our data driven model in reconstruction applications
What do we want to forecast/reconstruct : small scale structures <100km or large
scale tendency ?

Subject to

Low forecasting cost
Applyability in data assimilation
Model Interpretability

Long term simulation



Problem statement
General Framework : State space formulation

X(t) : Hidden states Xi45 = f(}_:t) +wirs
Y(t) : Observations (noisy and/or sparse) ve = Pu(H(xe) + )

Dynamical model (f)

True State

Observation

Observation model (7€)



Problem statement
General Framework : State space formulation

or models

and observations




Outline

Problem statement
Data driven model identification from a sequence of

observations
* Direct observations of the state space
 Noisy and partial observations
* Temporally sparse data
 Partially observed systems

Discussion
Perspectives
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Partially observed systems

Xi+s = f (Kt) + Wes

Unobservable No
Components Noise
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UNOBSERVABLE COMPONENTS
Motivation

Sea surface tracers evolution depends on a lot of unseen
variables (subsurface variables, fine-scale sea structures ...etc.).

The EOF decomposition gives only orthogonal modes, the model
may depend on non-orthogonal variables.

From a dynamical system POV, we only observe few components
of a higher dimensional governing equation.

ODE in the observation space => the observations are an
embedding of the higher dimensionnal space
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UNOBSERVABLE COMPONENTS
Motivation

An observation operator is an embedding of the hidden state
space if :

The mapping doesn’t collapse points (one-
to-one) or tangent directions (immersion)

Sauer et al. 1991 15



UNOBSERVABLE COMPONENTS
Motivation

An observation operator is an embedding of the hidden state
space if :

Sauer et al. 1991 Sauer et al. 1991

The mapping is an immersion The mapping is one-to-one

but fails to be one-to-one but fails to be an immersion
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UNOBSERVABLE COMPONENTS
Motivation

What happens when the
observation operator
doesn’t form an
Embedding of the hidden
state space ?
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UNOBSERVABLE COMPONENTS : Issues with classical
approach

Classical approach : dx/dt = f(x) ?
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UNOBSERVABLE COMPONENTS : Issues with classical
approach

Data are not

Classical approach : dx/dt = f(x) ?

The associated mapping cpt(x(O)) = fti)f(x(t’))dt’ is one-to-one
<Pt(x(0)) = @t(x(u)) > x(0) = x(u)

19



UNOBSERVABLE COMPONENTS : Conclusion

In several Real world problems, we are not (at all) provided with
some components directly or indirectly influencing the variability of

our underlying system

We need to find a higher dimensional space where our data will be
an embedding of the true states

Synergie studie then Physically guided data
include several other driven : find the most
observations and appropriate manifold in a
hope for the best higher dimension that fits

the best our obs
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Find an embedded representation :

Our approach : Project our observation x into a high dimensional space u, with
u=|x,I11,12,..,In]

Fit :
du_ D
With
u=|xI1,12,..,In]

t t
0,1 = argming {a|x(t) — G(ft_1 fENdt)| + (1 — a)|u(t) —ft 1 fuNde' |}
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Physically guided data driven : State reconstruction

Epoch — Last




Physically guided data driven : Forecasting
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Forecasting SLA :

* (OSSE based on realistic high-resolution ocean simulation data in the Western
Mediterranean sea from WMOP configuration (Juza et al. 2016).

 The Spatial resolution of 0.05 and a temporal resolution dt=1 day.

 The data from January 2009 to December 2014 were used as training and we
tested our approach on the first 347 days of the year 2015.

 The EOF space dimension n=15, which amounts to capture 95% of the total
variance.
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Forecasting SLA realistic forecast up to ~ 170 days !
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UNOBSERVABLE COMPONENTS
ssue

Our spawned manifold is not dense in the phase space :/
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UNOBSERVABLE COMPONENTS
dea

Boundedness constraints : Constraint the trajectories of the

dynamical system to live in a closed ball in the phase space

 The dynamical system is by construction stable (will not
diverge)

 The training data will (hopfully) make the model converge to
the true limit cycle
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UNOBSERVABLE COMPONENTS
dea

Boundedness constraints : Constraint the trajectories of the
dynamical system to live in a closed ball in the phase space

In practice : Energy preserving non linearity + Negative
eigenvalues of the linear part of (a shifted version of) the model
(Schlegel et al. 2013):

T

0,y,.7 = arg min min T Ix: — G (Po.c (ue—1))) ||?
: gt 2 ._ . )
t=1

+ AHUt — "-Iz'isl.t{_1—1:—1_}"E

+ Az JueN (us) |2

+ As||Relu(a)/Relu(a + 1)|?
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UNOBSERVABLE COMPONENTS
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UNOBSERVABLE COMPONENTS
96

True trajectories Predictions Pointwise error series
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UNOBSERVABLE COMPONENTS

Patch Based Shallow
Water Equation

The length of the domain is set to 1000 km x 1000 km with a
corresponding regular discretization of 80 x 80.

The temporal step size was set to satisfy the Courant—
Friedrichs—Lewy condition (dt=20.41 seconds).

As training data, we took a patch of size 250km x 250km in
the center of the 2D domain.

We use the first 49701 time steps as training data. The
training data was projected into an EOF basis with a
dimension n=5, which amounts to capture 75% of the total
variance.

Time: 0.00 Sec
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UNOBSERVABLE COMPONENTS

Patch Based Shallow
Water Equation

True Shallow water Model Simulation Error (RMSE)
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UNOBSERVABLE COMPONENTS

Patch Based Shallow
Water Equation

Model Simulation
from a perturbed
initial condition

Model Simulation #1

Model Simulation
from a far initial
condition
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UNOBSERVABLE COMPONENTS

Patch Based Sea Level
Anomaly (SLA)

e Patch 1: Training patch
e Test on test set of patch 1, 2 and 3.
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UNOBSERVABLE COMPONENTS

Patch Based Sea Level

Anomaly (SLA) Forecast on test set

of patch #1
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UNOBSERVABLE COMPONENTS

Patch Based Sea Level

Anomaly (SLA) Forecast on test set

of patch # 2
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UNOBSERVABLE COMPONENTS

Patch Based Sea Level

Anomaly (SLA) Forecast on test set

of patch # 3
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UNOBSERVABLE COMPONENTS

Patch Based Sea Level
Anomaly (SLA)

Model Simulation

Time: 0.00 Day

Model Simulation
from a perturbed
initial condition

Time: 0.00 Day

0 5 10 15 20 25 30
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Links to koopman operator theory

Koopman operator : Infinite-dimensional linear operator propagating observables
in time.

Observables: a function of the observations.

Ug(x) = g(P¢(x))
With
g(x) The observables and U; the koopman operator.
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Find an embedded representation :

Our approach : Project our observation x into a high dimensional space u, with
u=|x,I11,12,..,In]

Fit :
du _
ac oY
With

u=|xI1,12,..,In]

t
+(1—a) ‘u(t) — j Au(t)dt’
t

-1

6,1 = argming {a ‘x(t) -G (j Au(t’)dt’)
t—1

}
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UNOBSERVABLE COMPONENTS
SWE

True State Projection Koopman Error (MAE)

Time: 0.00 Sec Time: 0.00 Sec Time: 0.00 Sec Time: 0.00 Sec
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UNOBSERVABLE COMPONENTS
SLA (WMOP)
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UNOBSERVABLE COMPONENTS

Data assimilation

Reconstruction RMSE :

RMSE

| Koopman RMSE :

RMSE

AF Correl ation 03 1 3 E 2

Our maodel EMEE .
Correl ation
EMSE
Correl ation
EMSE
Correl ation

tMS
Our maodel EM E .
Correlation

MLP
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UNOBSERVABLE COMPONENTS
SLA (WMOP)

True State Projection Koopman

Time: 0.00 Day Time: 0.00 Day
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Linear model ?

Pros :

* Simple linear model (can be
integrated analytically even
without a laptop)

e Easier to train
e More suitable for data

assimilation application (modulo
good observations)

Cons :

Can’t simulate the data dynamics
(only short term forecast)

Initial condition needs to be in the
attractor space

No transient reproduction

45



Outline

Problem statement
Data driven model identification from a sequence of
observations

* Direct observations of the state space

 Noisy and partial observations

e Temporally sparse data
 Partially observed systems

Discussion
Perspectives
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Discussion

Can we use data driven models to forcast to c° sea
surface variables ?
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