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Problem statement

Often equations are too complicated or unknown
→ Data-driven dynamical modeling

Partial and/or noisy observations ?

General context : Modeling ocean dynamics

Chaotic dynamics : Non linear models with sensitive 
stability behavior

Forecasting and Reconstruction Applications
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• How to derive a data driven model from a collection of observations ?
• Which data driven formulation to use ?
• How to evaluate the performances of a data driven model
• How to use our data driven model in reconstruction applications
• What do we want to forecast/reconstruct : small scale structures <100km or large 

scale tendency ?

• Low forecasting cost
• Applyability in data assimilation
• Model Interpretability
• Long term simulation

My thesis as an optimization problem

Optimize

Subject to



General Framework : State space formulation

True State

Observation

X(t) : Hidden statesX(t) : Hidden states
Y(t) : Observations (noisy and/or sparse)
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Problem statement



General Framework : State space formulation
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Problem statement

Deterministic or stochastic models

Partial and noisy observations



Outline
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Partially observed systems

Unobservable
Components

No 
Noise
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UNOBSERVABLE COMPONENTS

Motivation
Sea surface tracers evolution depends on a lot of unseen
variables (subsurface variables, fine-scale sea structures ...etc.).

The EOF decomposition gives only orthogonal modes, the model 
may depend on non-orthogonal variables.

From a dynamical system POV, we only observe few components 
of a higher dimensional governing equation.

ODE in the observation space => the observations are an 
embedding of the higher dimensionnal space
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UNOBSERVABLE COMPONENTS

Motivation

Sauer et al. 1991

An observation operator is an embedding of the hidden state 
space if :

The mapping doesn’t collapse points (one-
to-one) or tangent directions (immersion)
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UNOBSERVABLE COMPONENTS

Motivation

Sauer et al. 1991 Sauer et al. 1991

An observation operator is an embedding of the hidden state 
space if :

The mapping is an immersion 
but fails to be one-to-one

The mapping is one-to-one
but fails to be an immersion
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UNOBSERVABLE COMPONENTS

Motivation

What happens when the 
observation operator 
doesn’t form an 
Embedding of the hidden 
state space ?
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UNOBSERVABLE COMPONENTS : Issues with classical 
approach

Classical approach : dx/dt = f(x) ?
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UNOBSERVABLE COMPONENTS : Issues with classical
approach

The associated mapping 𝜑𝑡 𝑥 0 = 𝑡0׬
𝑡
𝑓 𝑥 𝑡′ 𝑑𝑡′ is one-to-one

𝜑𝑡 𝑥 0 = 𝜑𝑡 𝑥 𝑢  𝑥 0 = 𝑥 𝑢

Data are not 

19

Classical approach : dx/dt = f(x) ?



UNOBSERVABLE COMPONENTS : Conclusion

In several Real world problems, we are not (at all) provided with
some components directly or indirectly influencing the variability of 
our underlying system

Physically guided data 
driven : find the most
appropriate manifold in a 
higher dimension that fits
the best our obs

Synergie studie then
include several other
observations and 
hope for the best
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We need to find a higher dimensional space where our data will be
an embedding of the true states



Find an embedded representation :
Our approach : Project our observation x into a high dimensional space 𝑢, with
𝑢 = [𝑥, 𝑙1, 𝑙2, … , 𝑙𝑛]

Fit :
𝑑𝑢

𝑑𝑡
= 𝑓𝜃 𝑢

With
𝑢 = [𝑥, 𝑙1, 𝑙2, … , 𝑙𝑛]

𝜃, 𝑙 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃,𝑙{𝛼|𝑥(𝑡) − 𝐺(න
𝑡−1

𝑡

𝑓 𝑢 𝑡′ 𝑑𝑡′)| + (1 − 𝛼)|𝑢 𝑡 − න
𝑡−1

𝑡

𝑓 𝑢 𝑡′ 𝑑𝑡′ |}
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Physically guided data driven : State reconstruction
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Physically guided data driven : Forecasting

Lyap = 0,87

Lyap = 0,82

Lyap = 0,96

Lyap = 0,82
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Forecasting SLA :
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• OSSE based on realistic high-resolution ocean simulation data in the Western 
Mediterranean sea from WMOP configuration (Juza et al. 2016).

• The Spatial resolution of 0.05 and a temporal resolution dt=1 day. 
• The data from January 2009 to December 2014 were used as training and we 

tested our approach on the first 347 days of the year 2015. 
• The EOF space dimension n=15, which amounts to capture 95% of the total 

variance. 



Forecasting SLA realistic forecast up to ~ 170 days !
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UNOBSERVABLE COMPONENTS

Issue
Our spawned manifold is not dense in the phase space :/

26



UNOBSERVABLE COMPONENTS

Idea
Boundedness constraints : Constraint the trajectories of the 
dynamical system to live in a closed ball in the phase space
• The dynamical system is by construction stable (will not 

diverge)
• The training data will (hopfully) make the model converge to 

the true limit cycle
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UNOBSERVABLE COMPONENTS

Idea
Boundedness constraints : Constraint the trajectories of the 
dynamical system to live in a closed ball in the phase space

In practice : Energy preserving non linearity + Negative
eigenvalues of the linear part of (a shifted version of) the model 
(Schlegel et al. 2013):
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UNOBSERVABLE COMPONENTS

L63
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UNOBSERVABLE COMPONENTS

L96
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UNOBSERVABLE COMPONENTS
Patch Based Shallow
Water Equation
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• The length of the domain is set to 1000 km x 1000 km with a 
corresponding regular discretization of 80 x 80.

• The temporal step size was set to satisfy the Courant–
Friedrichs–Lewy condition (dt=20.41 seconds). 

• As training data, we took a patch of size 250km x 250km in 
the center of the 2D domain. 

• We use the first 49701 time steps as training data. The 
training data was projected into an EOF basis with a 
dimension n=5, which amounts to capture 75% of the total 
variance. 



UNOBSERVABLE COMPONENTS
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True Shallow water Model Simulation Error (RMSE)

Patch Based Shallow
Water Equation



UNOBSERVABLE COMPONENTS
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Model Simulation #1

Model Simulation 
from a perturbed
initial condition

Model Simulation 
from a far initial 
condition

Patch Based Shallow
Water Equation



UNOBSERVABLE COMPONENTS
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• Patch 1 : Training patch
• Test on test set of patch 1, 2 and 3.

Patch Based Sea Level
Anomaly (SLA)



UNOBSERVABLE COMPONENTS
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Patch Based Sea Level
Anomaly (SLA) Forecast on test set 

of patch # 1



UNOBSERVABLE COMPONENTS

36

Forecast on test set 
of patch # 2

Patch Based Sea Level
Anomaly (SLA)



UNOBSERVABLE COMPONENTS
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Patch Based Sea Level
Anomaly (SLA) Forecast on test set 

of patch # 3



UNOBSERVABLE COMPONENTS
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Patch Based Sea Level
Anomaly (SLA)

Model Simulation

Model Simulation 
from a perturbed
initial condition



Links to koopman operator theory
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Koopman operator : Infinite-dimensional linear operator propagating observables 
in time. 

Observables: a function of the observations. 

𝑈𝑡𝑔(𝑥) = 𝑔(Φ𝑡(𝑥))
With
𝑔(𝑥) The observables and 𝑈𝑡 the koopman operator.



Find an embedded representation :
Our approach : Project our observation x into a high dimensional space 𝑢, with
𝑢 = [𝑥, 𝑙1, 𝑙2, … , 𝑙𝑛]

Fit :
𝑑𝑢

𝑑𝑡
= 𝐴𝑢

With
𝑢 = [𝑥, 𝑙1, 𝑙2, … , 𝑙𝑛]

𝜃, 𝑙 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃,𝑙 𝛼 𝑥 𝑡 − 𝐺 න
𝑡−1

𝑡

𝐴𝑢 𝑡′ 𝑑𝑡′ + 1 − 𝛼 𝑢 𝑡 − න
𝑡−1

𝑡

𝐴𝑢 𝑡′ 𝑑𝑡′
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UNOBSERVABLE COMPONENTS

SWE
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True State Projection Koopman Error (MAE)



UNOBSERVABLE COMPONENTS

SLA (WMOP)
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UNOBSERVABLE COMPONENTS

Data assimilation
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Reconstruction RMSE : 

Koopman RMSE : 
1.3 E-2



UNOBSERVABLE COMPONENTS

SLA (WMOP)
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True State Projection Koopman



Linear model ?

Pros : 
• Simple linear model (can be

integrated analytically even
without a laptop)

• Easier to train

• More suitable for data 
assimilation application (modulo 
good observations)
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Cons : 
• Can’t simulate the data dynamics

(only short term forecast)

• Initial condition needs to be in the 
attractor space

• No transient reproduction



Outline
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Discussion
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 Can we use data driven models to forcast to ∞ sea
surface variables ?
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