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Context, notation and goal
I Given a set of observations y
I And p different dynamic models {M(i)}i=1,...,p

I With independent realizations {x(i)}i=1,...,p

I Here, we use the Lorenz-96 and different forcing terms F
I How can we say which model ”match” the observations?
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Solution 1: comparing climatological distributions
I Compare climatological (marginal) distributions
I p

(
x(i)
)

VS p (y) , ∀ i = 1, . . . , p

I Work well if bias or different range of values
I Unable to detect models that are closed to the observations
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Solution 2: comparing model dynamics
I Compare conditional distributions between consecutive times
I p

(
x(i)(t)|x(i)(t − 1)

)
VS p (y(t)) , ∀ i = 1, . . . , p

I Dynamics are different depending on the models
I Differences appear in the extreme values
I Solution 2 (conditional) is preferred to solution 1 (marginal)
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Comparing model dynamics using data assimilation
I Need to start from the best initial condition
I Need to deal with observation uncertainties
I Data Assimilation (DA) is the perfect candidate

I The idea is to evaluate, at each assimilation cycle,

p
(

xf(i)(t)|xa(t − 1)
)

VS p (y(t)) , ∀ i = 1, . . . , p
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Computing model evidence in DA

I Find a metric to compare model dynamics

I Contextual Model Evidence (CME) is a possible one

I Introduced in DA by [Carrassi et al., 2017, Metref et al., 2019]

In the nonlinear and Gaussian DA case:

CME(i) =
T∏
t=1

L
(
y(t)|M(i)

)
(1)

with the innovation likelihood given by:

L
(
y(t)|M(i)

)
∝ exp

(
−d(i)(t)>Σ(i)(t)−1d(t)

)
(2)

where d(i)(t) = y(t)−Hxf(i)(t) and Σ(i)(t) = HPf
(i)(t)H> + R
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Pros and cons of model evidence in DA

I Pros of CME in DA:
I use observation (R) and model error (Pf

(i)) covariances
I easy to compute at each DA cycle

I Cons of CME in DA:
I need to run M(i) to get xf(i)(t) and Pf

(i)(t), ∀i and ∀t
I need to run global model (potentially large)
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Getting p
(
x(i)(t)|xa(t − 1)

)
using analogs

I Instead of running a model M(i), use analog forecasting

I Analog forecasts naturally capture xf(i) and Pf
(i)

I Analog forecasting can be easily plugged into DA algorithms

I The Analog Data Assimilation (AnDA)
[Tandeo et al., 2015, Lguensat et al., 2017]

I Other forecasting methods can be considered (e.g., neural
nets, kernel methods)

8/12



The computation of model evidence using AnDA
I Need sufficient catalog size to get good performance

I Results similar as the true DA (using model integration)

I Details given in [Chau, 2019]
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The interest of AnDA: the locality

I AnDA can be applied to a part of the state

I Thus, AnDA is able to compute CME locally

I Has been tested on a simple climate model (SPEEDY)

I 30 years or catalogs with different parameterizations

I Relative Humidity threshold in the Boundary Layer
(RHBL = 0.70, 0.82, 0.90, 1.06)
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Next step: application to climate simulations
I CMIP contains climate simulation runs for the future
I Different models (20) and scenarios (4) are considered
I For each scenario, each model has several members

I Goal 1 → create weighted projections of climate metrics
I Goal 2 → reduce the uncertainty of climate projections
I Data → compare current observations to climate simulations
I Method → use AnDA and the model evidence metric
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Thank you for your attention!
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