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Context, notation and goal

» Given a set of observations y
> And p different dynamic models {M}i=1,..p

» With independent realizations {x(;)}i=1,..p
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» Here, we use the Lorenz-96 and different forcing terms F

» How can we say which model "match” the observations?
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Solution 1: comparing climatological distributions

» Compare climatological (marginal) distributions
> p(x@) VS p(y), Vi=1,...,p

—— Model with F=8
—— Model with F=9
*  Obs. with F=8

—— Log-lik(Obs|F=8)=-277
—— Log-lik(Obs|F=9)=-277
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» Work well if bias or different range of values

» Unable to detect models that are closed to the observations
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Solution 2: comparing model dynamics

» Compare conditional distributions between consecutive times
> p(xi)(D)Ix@(t—1)) VS p(y(t)), Vi=1,....p
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» Dynamics are different depending on the
» Differences appear in the extreme values
» Solution 2 (conditional) is preferred to solution 1 (marginal)
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Comparing model dynamics using data assimilation

» Need to start from the best initial condition
» Need to deal with observation uncertainties
» Data Assimilation (DA) is the perfect candidate
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> The idea is to evaluate, at each assimilation cycle,
p (X (D1t = 1)) VS p(y(£), Y i=1,....p
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Computing model evidence in DA

» Find a metric to compare model dynamics
» Contextual Model Evidence (CME) is a possible one
» Introduced in DA by [Carrassi et al., 2017, Metref et al., 2019]

In the nonlinear and Gaussian DA case:

;
CME() = [T £ (v()IMy) (1)

t=1

with the innovation likelihood given by:
L (y(t)|M(i)) o exp <_d(i)(t)Tz(i)(t)_1d(t)) (2)

where d(jy(t) = y(t) — Hx(,.)(t) and X;)(t) = HP! (t)HT +R

(1)
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Pros and cons of model evidence in DA
K-long evidencing window
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» Pros of CME in DA:

> use observation (R) and model error (P(i)) covariances
> easy to compute at each DA cycle

» Cons of CME in DA:
> need to run M) to get x(;)(t) and P{;(t), Vi and Vt
> need to run global model (potentially large)
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Getting p (x(;(t)[x*(t — 1)) using analogs

> Instead of running a model M, use analog forecasting

» Analog forecasts naturally capture x(l.) and P(f)

1
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Catalog 1
(historical observations or numerical simulations)

» Analog forecasting can be easily plugged into DA algorithms

» The Analog Data Assimilation (AnDA)
[Tandeo et al., 2015, Lguensat et al., 2017]

» Other forecasting methods can be considered (e.g., neural
nets, kernel methods)
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The computation of model evidence using AnDA

Model evidence (%)

>
| 2
| 2

Need sufficient catalog size to get good performance
Results similar as the true DA (using model integration)
Details given in [Chau, 2019]

AnDA with observations from F=8

F=8 VS F=6
— F=8VSF=7
— F=8VSF=9

— F=8VSF=10
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The interest of AnDA: the locality

» AnDA can be applied to a part of the state
» Thus, AnDA is able to compute CME locally

Time-averaged log-likelihood difference Domain-averaged log-likelihood difference
for mid-level temperatures for mid-level temperatures
(with respect to parameterization RHBL=0.90) (with respect to parameterization RHBL=0.90)
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» Has been tested on a simple climate model (SPEEDY)
» 30 years or catalogs with different parameterizations

» Relative Humidity threshold in the Boundary Layer
(RHBL = 0.70, 0.82, 0.90, 1.06)
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Next step: application to climate simulations

» CMIP contains climate simulation runs for the future
» Different models (20) and scenarios (4) are considered
» For each scenario, each model has several members

CMIPS5 models, RCP scenarios
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RCP scenarios in CMIP simulations Atlantic Meridional Overturning Circulation (AMOC) simulations

from different climate models
» Goal 1 — create weighted projections of climate metrics
» Goal 2 — reduce the uncertainty of climate projections
» Data — compare current observations to climate simulations

» Method — use AnDA and the model evidence metric
11/12



Thank you for your attention!
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