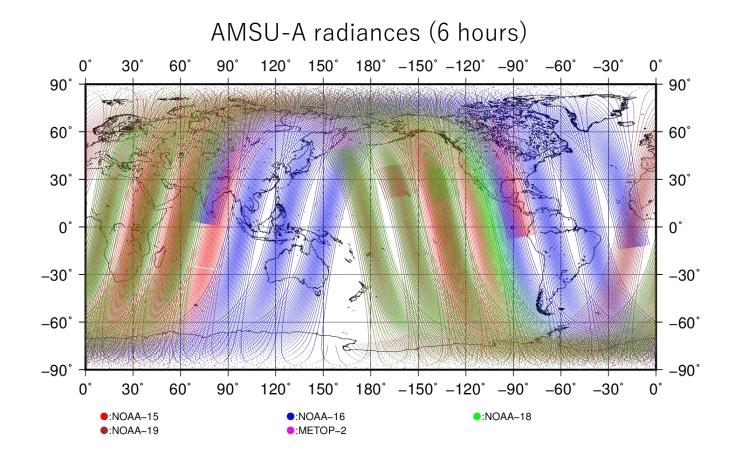
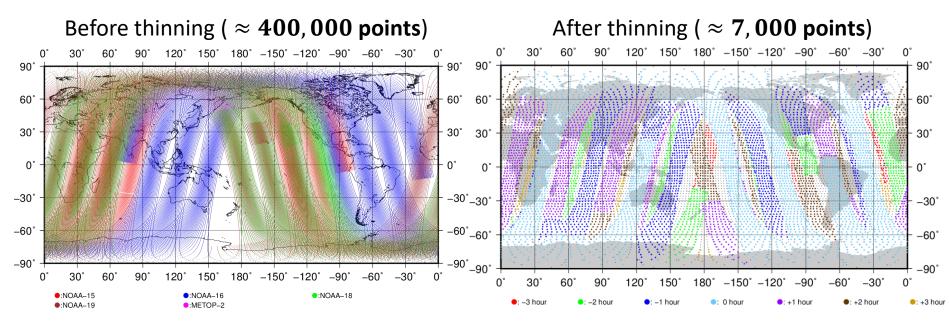
Accounting for the horizontal observation error correlation of satellite radiances in data assimilation

Koji Terasaki and Takemasa Miyoshi RIKEN R-CCS Data assimilation research team

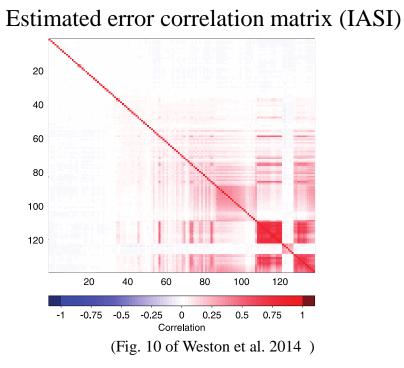
- Observations measured with the same instrument are known to have <u>error</u> <u>correlations</u>.
 - e.g., Satellite radiances, Atmospheric motion vector, Doppler radar

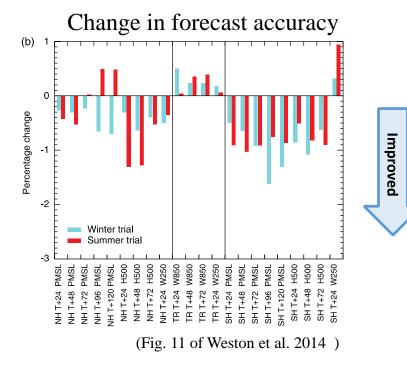


• There are some studies to estimate the <u>horizontal observation error</u> <u>correlations</u>, but not used in data assimilation (DA). We usually <u>thin</u> the horizontally dense observations and assume no-error correlations in DA.



- There are some studies to estimate the <u>horizontal observation error</u> <u>correlations</u>, but not used in data assimilation (DA). We usually <u>thin</u> the horizontally dense observations and assume no-error correlations in DA.
- Accounting for the <u>inter-channel (vertical)</u> observation error correlation will improve the analysis and forecast. (e.g., Weston et al. 2014, Bormann et al. 2016)

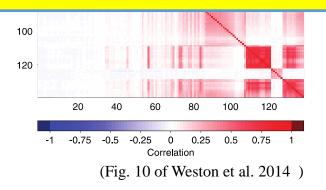


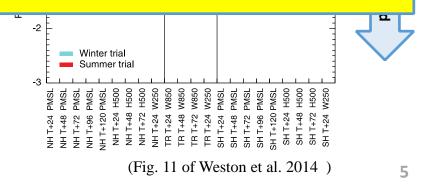


4

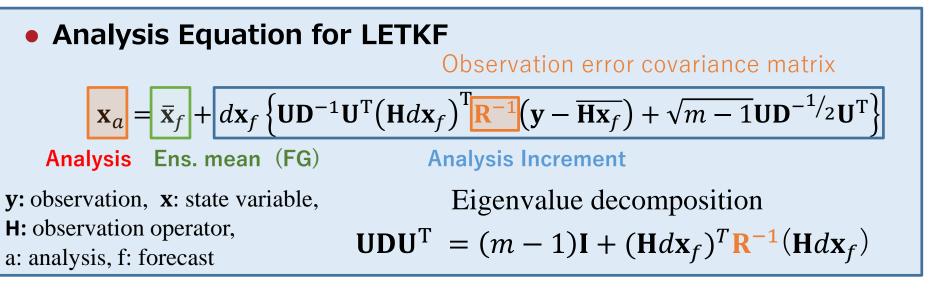
- There are some studies to estimate the <u>horizontal observation error</u> <u>correlations</u>, but not used in data assimilation (DA). We usually <u>thin</u> the horizontally dense observations and assume no-error correlations in DA.
- Accounting for the <u>inter-channel (vertical)</u> observation error correlation will improve the analysis and forecast. (e.g., Weston et al. 2014, Bormann et al. 2016)

<u>Goal</u> is to investigate how to effectively utilize dense observations in horizontal by accounting for the <u>horizontal obser</u> <u>vation error correlations</u> of AMSU-A radiances in DA and improve the weather forecast.





Local ensemble transform Kalman filter



• Assuming diagonal **R** matrix

< Merit >

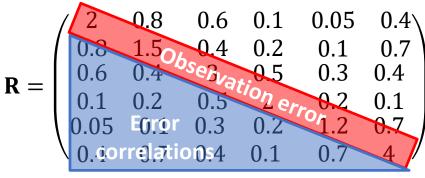
• Low computational cost for inverting \mathbf{R} matrix

< Demerit >

• Need to thin the observations (in spatial and between channels)

Accounting for the OECs in LETKF

Require the inversion the **R** matrix High computational cost Destabilize due to the **high condition number** → Stabilize by **Recondition** (Condition number: ratio between the largest and smallest eigenvalues)



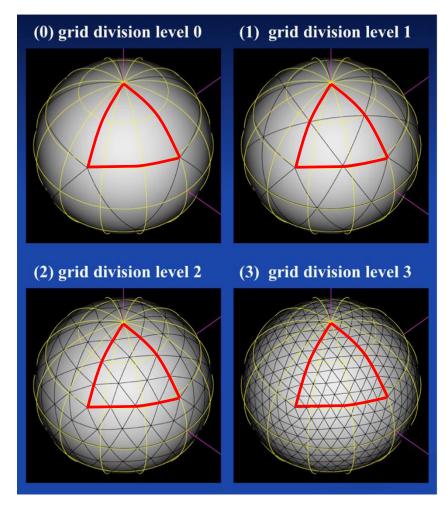
Idealized experiment

NICAM: Nonhydrostatic Icosahedral Atmospheric Model

Grid division level 0 is the original lcosahedron.

The horizontal resolution can be increased by splitting one triangle into four triangles.

Grid division level	Horizontal resolution
6	112 km
7	56 km
8	28 km
9	14 km
10	7 km
11	3.5 km
12	1.7 km
13	0.87 km



Idealized experiment with NICAM-LETKF

- Horizontal resolution: Glevel-6 (112km)
- Vertical resolution: 38 layers (model top = 40km)

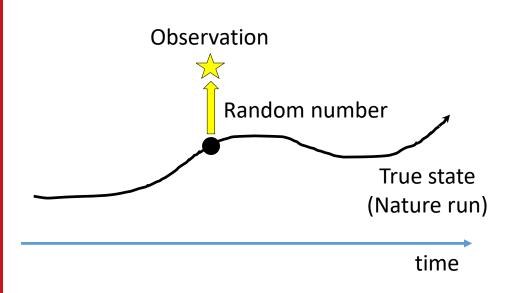
Ensemble size:

Period:

40

2 months (From 2012/1/1/00Z - 2012/2/29/18Z)

Observing System Simulation Experiments (OSSE)



- Error-correlated random number $\mathbf{R} = \mathbf{C}\mathbf{C}^T$
 - $\epsilon = C \mu$

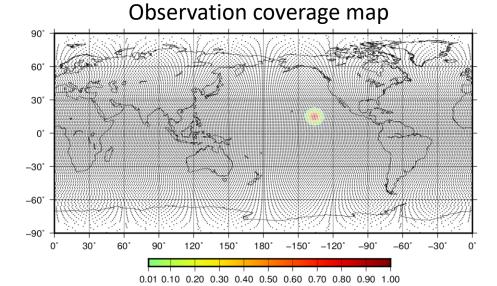
R: Observation error covariance matrix

- C: Cholesky decomposition of R matrix
- μ : Normal random number
- $\boldsymbol{\epsilon}$: Error-correlated random number

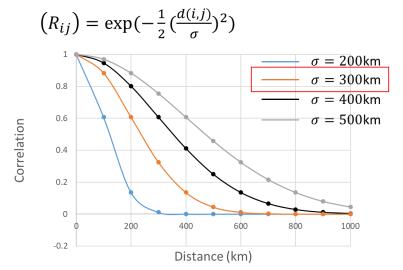
Idealized experiment with NICAM-LETKF

Simulated observations with dx=150km

- Error standard deviations
 - T = 2 (K), U & V = 4 (m/s)
- Error correlations
 - 15 pressure levels
 - No error-correlation in different levels
 - Condition number $> 10^{10}$

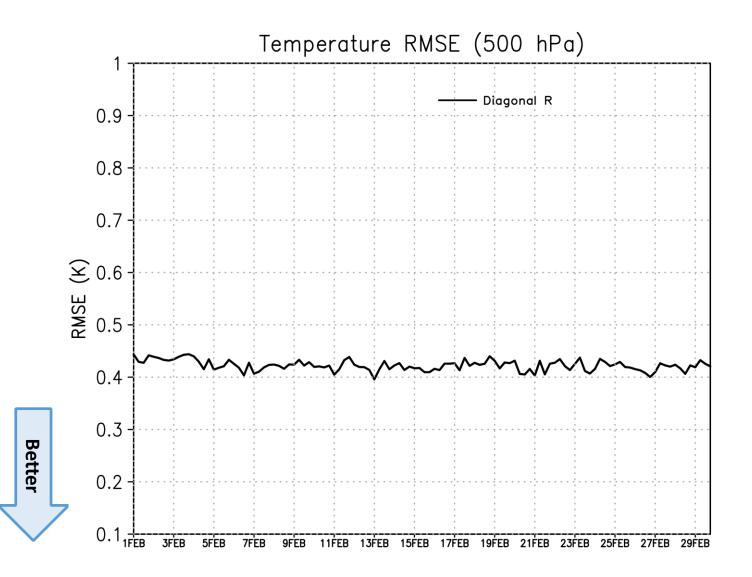


Error correlation for the observation located at 136.047°W and 14.887°N

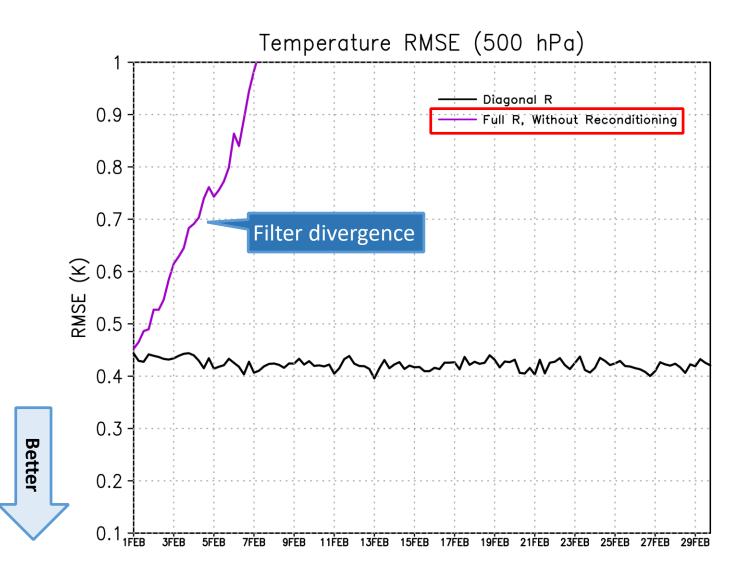


✓Gaussian Function

Analysis RMSE (Temperature)



Analysis RMSE (Temperature)



Using extremely ill-conditioned **R** matrix leads to filter divergence.

Stabilize the LETKF by reconditioning

- Reconditioning is a method to reduce the condition number of a matrix.
 - Add a constant value to the diagonal terms of the **R** matrix (Weston et al. 2014).
 - It corresponds to shifting the all eigenvalues by λ_{inc} .

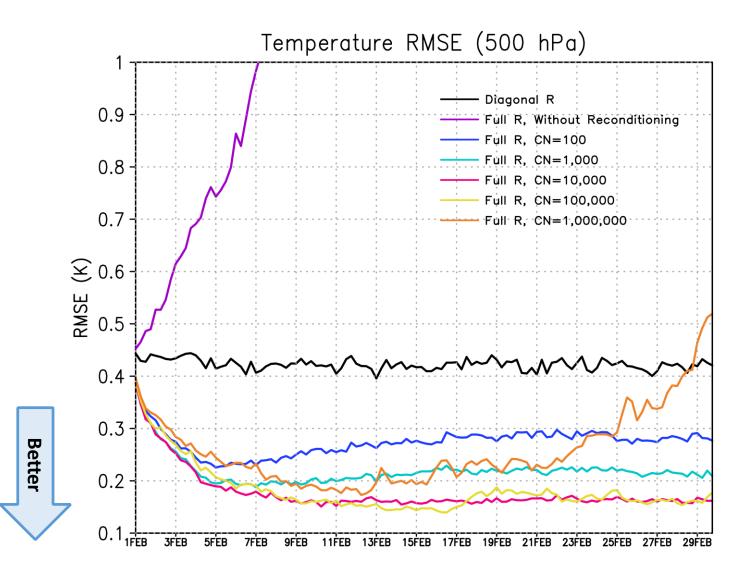
$$\mathbf{R}_{\text{new}} = \lambda_{inc} \mathbf{I} + \mathbf{R}$$

$$\lambda_{inc} = \frac{\lambda_{max} - \lambda_{min}\kappa_{req}}{\kappa_{req} - 1}$$

 κ_{reg} is a condition number after reconditioning.

Example: $\lambda_{max} = 10^{0} \text{ and } \lambda_{min} = 10^{-8} \rightarrow \text{ the condition number is } 10^{8}.$ $\kappa_{req} = 10^{3} \rightarrow \lambda_{inc} \approx 0.001001$ Adding λ_{inc} does not change the structure of the original **R** matrix.

Analysis RMSE (Temperature)



The analysis is improved and the best with condition number 10,000 or 100,000.

Experiment with real observations (AMSU-A)

Experimental setting

Horizontal resolution:	Glevel-6 (112km)
Vertical resolution:	38 layers (model top = 40 km)
Ensemble size:	32
Period:	From 2018/6/10/00UTC 2018/9/1/00UTC
Observations:	Conventional observations, AMSU-A

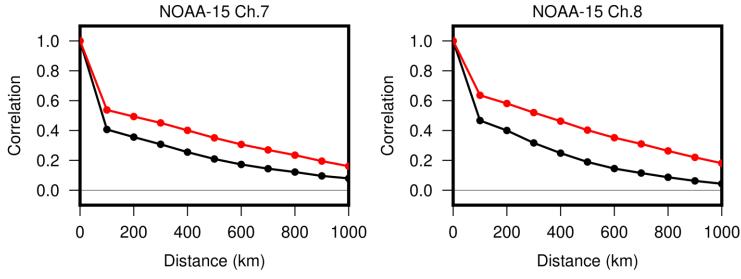
	Observation error correlation	Thinning distance of AMSU-A	
DIAG250 (Control experiment)		250 km	More observation
DIAG125		125 km	
FULL125	\checkmark	125 km	Account for full R

Estimation of R matrix

• **R** matrix is estimated using innovation statistics (Desroziers et al. 2005)

a: analysis, *b*: forecast, < >: statistical expectation

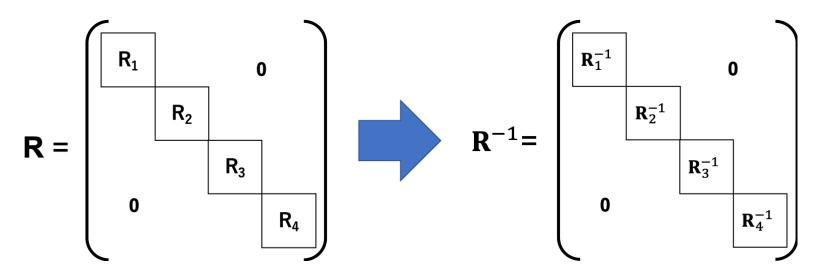
- This estimation assumes that appropriate **R** matrix is used in DA.
- **1.** Estimate R matrix using DIAG125 experiment (Black line)
- 2. Estimate R matrix using FULL125 experiment (Red line)



The condition number of R matrix is not so large.

Computational Cost

- Inverting the **R** matrix will increase when the non-diagonal components are considered.
- The **R** matrix becomes block diagonal because the error correlation between satellites and channels is not considered.
- Inverting the small block diagonal matrix suppress the increase in computational cost. (Up to 13 %)

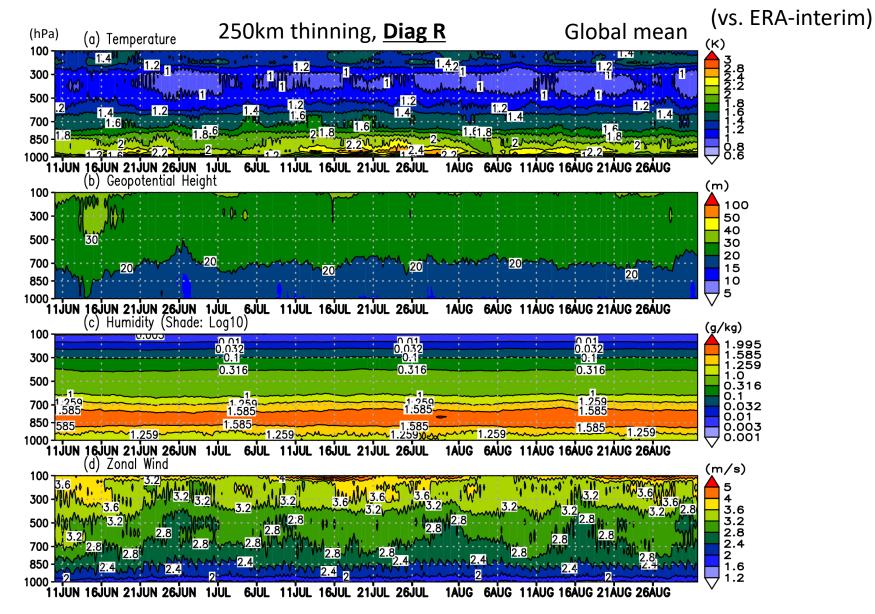


Computational Cost

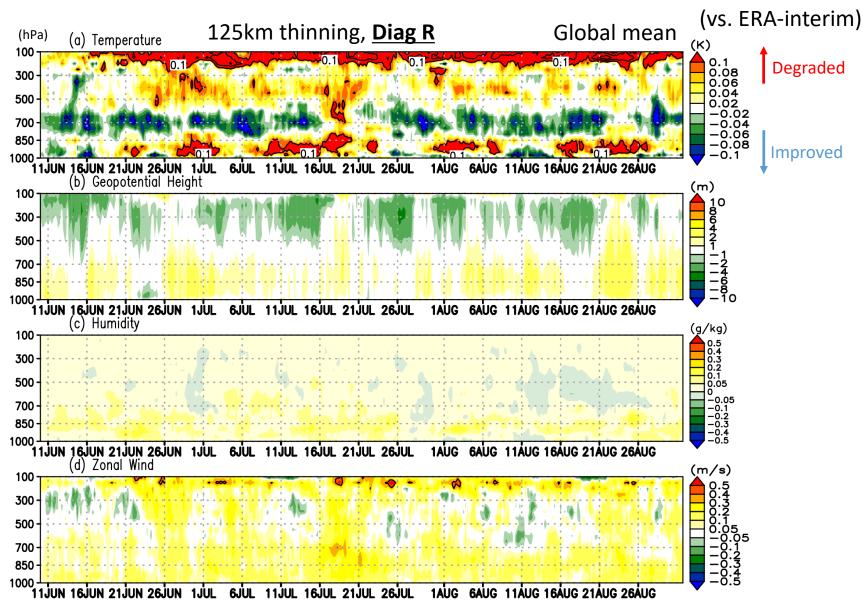
Using 32 nodes of supercomputer FX100

	Obs Cor	Thinning			
			Obs. Ope.	LETKF	
DIAG250		250 km	24.54 (s)	70.89 (s)	
DIAG125		125 km	32.36 (s)	75.18 (s)	
FULL125	V	125 km	32.11 (s)	84.89 (s)	Only 13% incre

Analysis RMSE (DIAG250 : Control experiment)



Analysis RMSE change (DIAG125 vs DIAG250)



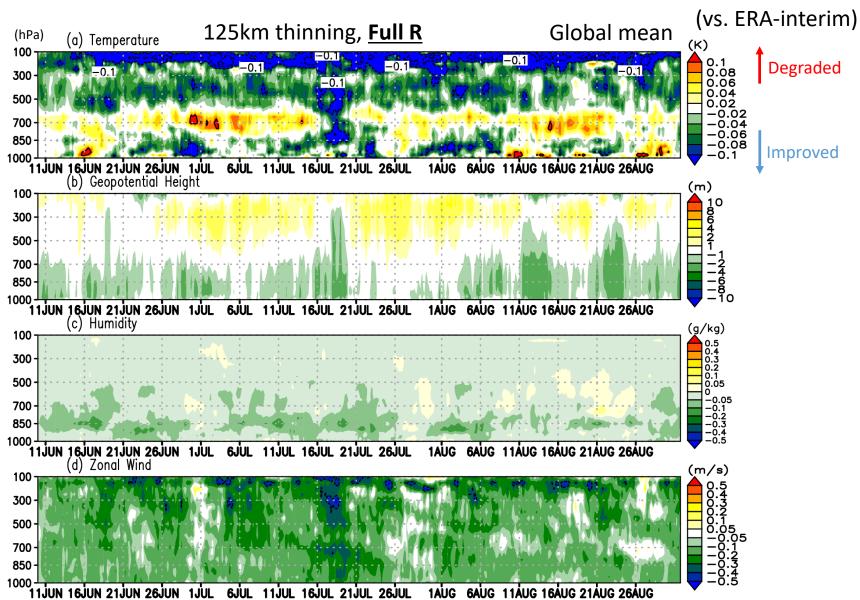
Computer simulations

create the future

R-CCS

Assimilating dense observations with diagonal **R** matrix makes the analysis worse. ²¹

Analysis RMSE change (FULL125 vs DIAG125)



Accounting for full **R** matrix makes the analysis better.

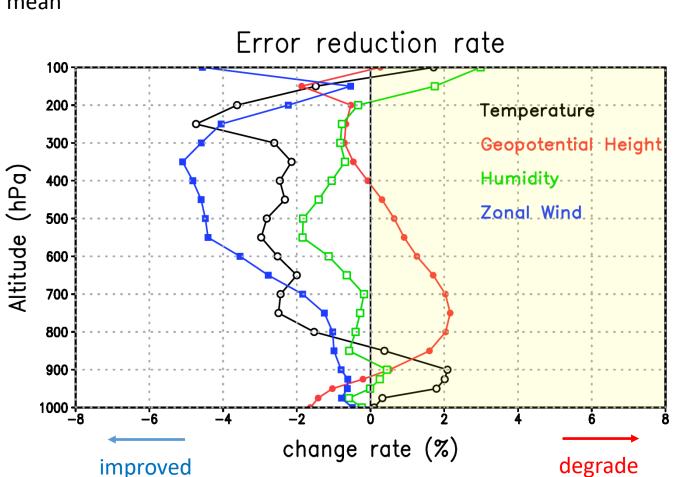
Computer simulations

create the future

R-CCS

Analysis RMSE change (FULL125 vs DIAG250)

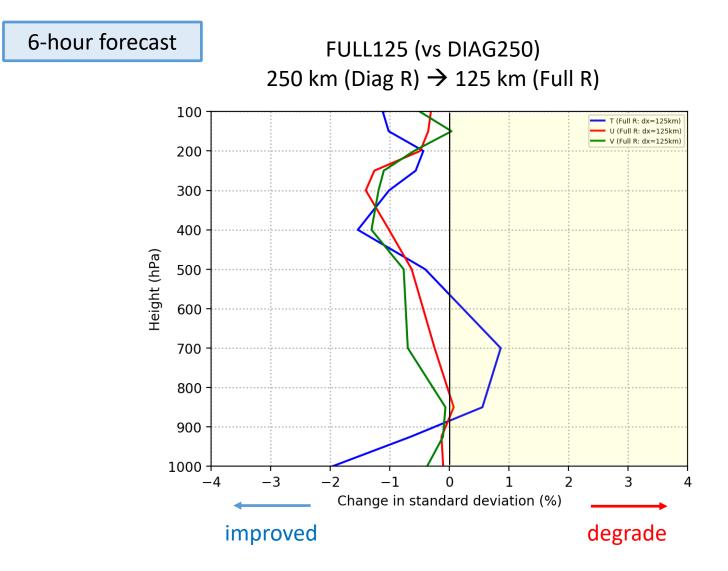
2-month average (From 00Z 1 July to 18Z 31 August)



Global mean

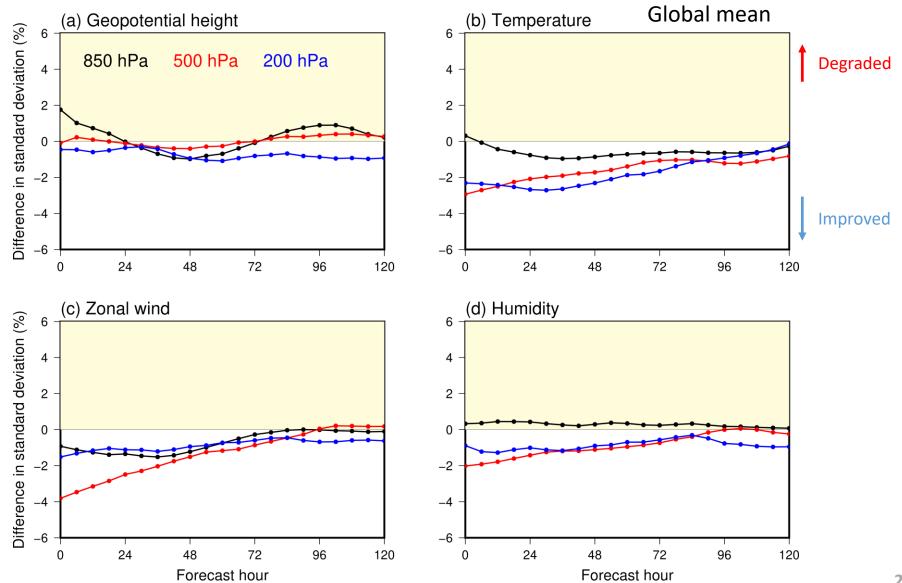
- Positive impact on zonal wind and temperature
- Slightly degrade geopotential height

Verification against observation



• Improved except for temperature of lower troposphere

Forecast improvements



Summary

- Accounting for the horizontal observation error correlation in DA
 - Idealized case experiment
 - LETKF computation was unstable when the condition number of **R** matrix was large.
 - Reducing the condition number of \mathbf{R} matrix by reconditioning stabilized the LETKF computation.
 - The analysis was greatly improved by accounting for the observation error correlation.
 - Experiment with real observations (AMSU-A)
 - **R** matrix was estimated innovation statistics.
 - The analysis was improved by up to 5% by accounting for the observation error correlation.
 - The forecast was also improved especially for temperature and zonal wind.