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Observation error correlations
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⚫ Observations measured with the same instrument are known to have error 

correlations.

⚫ e.g., Satellite radiances, Atmospheric motion vector, Doppler radar

AMSU-A radiances (6 hours)



Observation error correlations
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⚫ There are some studies to estimate the horizontal observation error 

correlations, but not used in data assimilation (DA). We usually thin the 

horizontally dense observations and assume no-error correlations in DA.

Before thinning ( ≈ 𝟒𝟎𝟎, 𝟎𝟎𝟎 points) After thinning ( ≈ 𝟕, 𝟎𝟎𝟎 points)



Observation error correlations
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⚫ There are some studies to estimate the horizontal observation error 

correlations, but not used in data assimilation (DA). We usually thin the 

horizontally dense observations and assume no-error correlations in DA.

⚫ Accounting for the inter-channel (vertical) observation error correlation 

will improve the analysis and forecast. (e.g., Weston et al. 2014, Bormann 

et al. 2016)
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(Fig. 11 of Weston et al. 2014  )

Change in forecast accuracy

(Fig. 10 of Weston et al. 2014  )

Estimated error correlation matrix (IASI)
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Goal is to investigate how to effectively utilize dense

observations in horizontal by accounting for the horizontal obser

vation error correlations of AMSU-A radiances in DA and

improve the weather forecast.



Local ensemble transform Kalman filter
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⚫ Analysis Equation for LETKF

𝐱𝑎 = ത𝐱𝑓 + 𝑑𝐱𝑓 𝐔𝐃−1𝐔T 𝐇𝑑𝐱𝑓
T
𝐑−1 𝐲 − 𝐇𝐱𝑓 + 𝑚 − 1𝐔𝐃− ൗ1 2𝐔T

Analysis Ens. mean  (FG) Analysis Increment

Observation error covariance matrix

Eigenvalue decomposition

𝐔𝐃𝐔T = 𝑚 − 1 𝐈 + (𝐇𝑑𝐱𝑓)
𝑇𝐑−1(𝐇𝑑𝐱𝑓)

• Assuming diagonal R matrix

＜Merit＞

• Low computational cost for inverting R matrix

＜Demerit＞

• Need to thin the observations

（in spatial and between channels）

Accounting for the OECs in LETKF
Require the inversion the R matrix
High computational cost
Destabilize due to the high condition number → Stabilize by Recondition
（Condition number: ratio between the largest and smallest eigenvalues）
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𝐲: observation,  𝐱: state variable,

H: observation operator,

a: analysis, f: forecast
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Idealized experiment



NICAM: Nonhydrostatic Icosahedral 
Atmospheric Model
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Grid division level 0 is the original 
Icosahedron.
The horizontal resolution can be increased 
by splitting one triangle into four triangles.

Grid division
level

Horizontal
resolution

6 112 km

7 56 km

8 28 km

9 14 km

10 7 km

11 3.5 km 

12 1.7 km

13 0.87 km



Idealized experiment with NICAM-LETKF

9

Horizontal resolution: Glevel-6  (112km)

Vertical resolution: 38 layers (model top = 40km)

Ensemble size: 40

Period: 2 months (From 2012/1/1/00Z - 2012/2/29/18Z)

Observing System Simulation Experiments (OSSE)

time

True state
(Nature run)

Random number

Observation
• Error-correlated random number

𝐑 = 𝐂𝐂𝑇

𝛆 = 𝐂𝛍

𝐑: Observation error covariance matrix

𝐂: Cholesky decomposition of R matrix

𝛍: Normal random number

𝛆: Error-correlated random number



Idealized experiment with NICAM-LETKF
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⚫ Simulated observations with dx=150km

⚫ Error standard deviations

⚫ T = 2 (K),       U & V = 4 (m/s)

⚫ Error correlations

⚫ 15 pressure levels

⚫ No error-correlation in different levels

⚫ Condition number > 1010

Observation coverage map

Error correlation for the observation 
located at 136.047°W and 14.887°N



Analysis RMSE (Temperature)
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Filter divergence

Using extremely ill-conditioned R matrix leads to filter divergence. 



Stabilize the LETKF by reconditioning
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⚫ Reconditioning is a method to reduce the condition number of a matrix.

⚫ Add a constant value to the diagonal terms of the R matrix (Weston et al. 2014).

⚫ It corresponds to shifting the all eigenvalues by 𝜆𝑖𝑛𝑐.

𝐑new = 𝜆𝑖𝑛𝑐𝐈 + 𝐑

𝜆𝑖𝑛𝑐 =
𝜆𝑚𝑎𝑥 − 𝜆𝑚𝑖𝑛𝜅𝑟𝑒𝑞

𝜅𝑟𝑒𝑞 − 1

𝜅𝑟𝑒𝑞 is a condition number after reconditioning.

Example:

𝜆𝑚𝑎𝑥 = 100 and  𝜆𝑚𝑖𝑛 = 10−8 → the condition number is 108.

𝜅𝑟𝑒𝑞 = 103 → 𝜆𝑖𝑛𝑐 ≈ 0.001001

Adding 𝜆𝑖𝑛𝑐 does not change the structure of the original R matrix.



Analysis RMSE (Temperature)
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The analysis is improved and the best with condition number 10,000 or 100,000.
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Experiment with real 
observations (AMSU-A)



Experimental setting
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Horizontal resolution: Glevel-6  (112km)

Vertical resolution: 38 layers (model top = 40km)

Ensemble size: 32

Period: From 2018/6/10/00UTC   2018/9/1/00UTC

Observations: Conventional observations, AMSU-A

Observation error 
correlation

Thinning distance of 
AMSU-A

DIAG250 (Control experiment) 250 km

DIAG125 125 km

FULL125 ✓ 125 km

More observation

Account for full R



Estimation of R matrix
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⚫ R matrix is estimated using innovation statistics (Desroziers et al. 2005)

⚫ < 𝐝𝑎𝐝𝑏
T >= < 𝐲 − 𝐇𝐱𝑎 𝐲 − 𝐇𝐱𝑏

T >= 𝐑

a: analysis, b: forecast, < >: statistical expectation 

⚫ This estimation assumes that appropriate R matrix is used in DA.

1. Estimate R matrix using DIAG125 experiment (Black line)

2. Estimate R matrix using FULL125 experiment (Red line)

The condition number of R matrix is not so large.



Computational Cost
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⚫ Inverting the R matrix will increase when the non-diagonal 

components are considered.

⚫ The R matrix becomes block diagonal because the error correlation 

between satellites and channels is not considered.

⚫ Inverting the small block diagonal matrix suppress the increase in 

computational cost. (Up to 13 %)



Computational Cost
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Obs Cor Thinning

Obs. Ope. LETKF

DIAG250 250 km 24.54 (s) 70.89 (s)

DIAG125 125 km 32.36 (s) 75.18 (s)

FULL125 ✓ 125 km 32.11 (s) 84.89 (s)

Using 32 nodes of supercomputer FX100

Only 13% increase



Analysis RMSE (DIAG250：Control experiment)
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250km thinning, Diag R Global mean(hPa)
(vs. ERA-interim)



Analysis RMSE change (DIAG125 vs DIAG250)

21Assimilating dense observations with diagonal R matrix makes the analysis worse.

(hPa)
(vs. ERA-interim)

Global mean125km thinning, Diag R

Degraded

Improved



Analysis RMSE change (FULL125 vs DIAG125)
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(hPa)
(vs. ERA-interim)

Global mean

Accounting for full R matrix makes the analysis better.

125km thinning, Full R

Degraded

Improved



Analysis RMSE change (FULL125 vs DIAG250)
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2-month average (From 00Z 1 July to 18Z 31 August)

• Positive impact on zonal wind and temperature
• Slightly degrade geopotential height

Global mean

improved degrade



Verification against observation
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FULL125 (vs DIAG250)
250 km (Diag R) → 125 km (Full R)

• Improved except for temperature of lower troposphere

improved degrade

6-hour forecast



Forecast improvements
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Global mean

Improved

Degraded



⚫ Accounting for the horizontal observation error correlation in DA

⚫ Idealized case experiment

⚫ LETKF computation was unstable when the condition number of R matrix 

was large.

⚫ Reducing the condition number of R matrix by reconditioning stabilized the 

LETKF computation.

⚫ The analysis was greatly improved by accounting for the observation error 

correlation.

⚫ Experiment with real observations (AMSU-A)

⚫ R matrix was estimated innovation statistics.

⚫ The analysis was improved by up to 5% by accounting for the observation 

error correlation.

⚫ The forecast was also improved especially for temperature and zonal wind.

Summary


