IMT-RIKEN Workshop @Brest France Feb.11, 2020

AI Approach for Advanced Weather Forecasting

Naonori Ueda

Disaster Prevention Science Team Center for AIP, RIKEN

Center for AIP, RIKEN (2016-2026)

1. Developing Next-Generation AI Technologies

2

2. Accelerate scientific research with AI technologies

3. Solve Socially Critical Problems by AI

Research Project

- ✓ The Japan's Big Data Assimilation (BDA) Project JST CREST, 2013-2019, Leader : Dr. Miyoshi (RIKEN, R-CCS)
- ✓ AIP (Advanced Intelligence Project) Acceleration Research, 2019-2022, Integration of DA and AI with high-performance computation (HPC).

JST: Japan Science and Technology Agency CREST: Core Research for Evolutional Science and Technology Funding program for team-oriented research with the aim of achieving the strategic goals set forth by the government

Mip Disaster Resilience Science Team 2016.9 ~

Our challenge is to develop novel AI approaches to accelerate disaster prevention research.

Researcher & PostDoc: 4 Visiting Researcher: 5

Research collaboration with

National Research Institute Earth Science and Disaster Resilience

Earthquake Research Institute, University of Tokyo

Japan Meteorological Agency

Research Topics

1. Earthquake damage evaluation

- Evaluate how much damage will occur by a megaquake

2. Earthquake occurrence forecasting

- Reproduce the Nankai Trough historical sequence

3. Landslide susceptibility mapping

- Create a map for the potential for landslide

4. Weather forecasting 2019.10~

- Develop "Integrated Guidance" to optimally combine multiple numerical forecast results

Today's Topics

✓ Forecasting Rapidly Developing Typhoon

Kurora, Hachiya, Shimada, and Ueda

Japan Meteorological Society 2019

✓ Integrated Guidance

Just started ...

Collaboration with Japan Meteorological Agency

Research Topics

✓ Forecasting Rapidly Developing Typhoon

✓ Integrated Guidance

Collaboration with JMA

Background

• Severe damage by rapidly developing typhoons

damage in Japan by Jebi, 2018

- Accurate forecasting of rapidly development is required
- However, # of rapidly developing typhoons is very limited

Related works: SHIPS

SHIPS: Statistical Hurricane Intensity Prediction System

• Predicting the central pressure change y_t^i from environmental features x_t^i generated from models

• Linear regression model is used in SHIPS

$$\hat{y}_t^i = f(x_t^i) = x_t^i w \qquad w = (w_1, w_2, \cdots , w_{24})$$

Catalog data (SHIPS)

- Environmental conditions
 - Sea temperature, wind strength over sky etc.
 - Time-series data from birth to death of a typhoon
 - Extracting features for every 6 hours sliding window

Problem of SHIPS

 Linear regression tends to influenced by the majority of data and it is difficult to predict rapid intensification

Intensification forecast as classification task

We define rapid intensification forecasting as binary classification task
Observation

$$\begin{pmatrix} y_t^i = \begin{cases} 1 & p_{t+\Delta t}^i - p_t^i < \tau \\ 0 & p_{t+\Delta t}^i - p_t^i \geq \tau \end{cases}$$

$$\tau$$
:threshold of central pressure change

$$y_t^i = 0$$
: normal typhoon

 $y_t^i = 1$: rapidly developing typhoon

Setting threshold

 Calculate the amount of change in the central pressure between the forecast time and the initial time for each window
Ex: the forecast time is 48 hours after the initial time

Usual Binary Classification Scheme

• Binary (rapid or normal) classification formulation

The loss CE decreases as the predicted value approaches the true value

Cross-entropy minimization cannot handle imbalances between rapidly developing (small) and normal (many) data

Direct AUC maximization using neural network Ueda & Fujino, 2018

- In binary classification tasks, accuracy is the most commonly used as a measure of classifier performance.
- In some applications such as anomaly detection and diagnostic testing, accuracy is not an appropriate measure since prior probabilities are often greatly biased.
- Although in such cases, the AUC has been utilized as a performance measure, few methods have been proposed for directly maximizing the AUC.
- The conventional approach utilizes a linear function as the scoring function.
- In contrast, we newly introduce nonlinear scoring functions for this purpose.

TPR , FPR

True Positive Rate (TPR) :

Prob. that true positives are correctly predicted as positive:

 $TPR = \frac{TP}{TP + FN} = \frac{TP}{n_{+}}$

False Positive Rate (FPR) :

Prob. that true negatives are incorrectly predicted as positive:

$$FPR = \frac{FP}{FP + TN} = \frac{FP}{n_{-}}$$

ROC (Receiver Operating Characteristic)

Binary classification (positive or negative) should be evaluated by ROC-AUC

Direct AUC maximization using neural network

AUC = Prob
$$(f(\mathbf{x}^+) > f(\mathbf{x}^-)) \approx \frac{1}{n^+ n^-} \sum_{i=1}^{n^+} \sum_{j=1}^{n^-} I(f(\mathbf{x}^+) > f(\mathbf{x}^+))$$

 x^+ :input feature of intensifying window n^+ :number of intensifying windows $I(x) = \begin{cases} 1 & x = True \\ 0 & x = False \end{cases}$ x^- :input feature of normal window n^- :number of normal windows $I(x) = \begin{cases} 1 & x = True \\ 0 & x = False \end{cases}$

- AUC is the probability of $f(x^+)$ being larger than $f(x^-)$
- We maximize smoothed version of AUC

$$AUC_{smooth} = \frac{1}{n^{+}n^{-}} \sum_{i=1}^{n^{+}} \sum_{j=1}^{n^{-}} s(x^{+}, x^{-}; \theta) \qquad s(x^{+}, x^{-}; \theta) = \frac{1}{1 + \exp[-\{f(x^{+}; \theta) - f(x^{-}; \theta)\}]}$$

• We design function f(x) with fully connected neural network

 $f(\dots, 0) = 0^{t}$

Experimental setting

• Window length: 48-hour

- Intensifying threshold: 95 percentile pressure change in windows
- Training data: typhoons occurred in 1987-2012 year
- Test data: typhoons occurred in 2013-2017 year

Result

NN-CE: neural network with cross-entropy loss NN-AUC: neural network with AUC maximization (proposed)

Precision: Percentage of data that is predicted positive and that is actually positive Recall: The percentage of real positives that were predicted positive

14-17 point improved	method	Precision	Recall	F1 score	8-9 point improved
	SHIPS	0.272/0.096	0.166/1.0	0.206/0.175	
	NN-CE	0.450/0.426	0.159/0.180	0.235/0.253	
	NN-AUC	0.325/0.327	0.361/0.368	0.342/0.346	

Classification threshold is set to 10/50 percentile

Evaluation (score distribution)

Intensifying score predicted by NN-CE and NN-AUC

Proposed method can provide high score for rapidly developing typhoons

Summary

- Goal: improve the forecasting performance for intensifying typhoons with limited training data
- Existing methods: affected by the majority of normal typhoons
- Proposed method: directly maximizing AUC by introducing smoothed variant of with neural network
- Results:
 - Proposed method improved the performance for forecasting intensifying typhoons
 - However, recall is as low as 0.68
- Future works:
 - Combine satellite images with SHIPS features

Integrated Guidance

Collaboration with Japan Meteorological Agency

Guidance: Bridging Numerical Model and Forecast

Pros and Cons among Numerical Models

		Topography	Spatial Resolution	Temporal Resolution	Length of Forecast
B	LFM	Detailed	2 km	1 Hours	9 Hours
	MSM		5 km	3 Hours	39 Hours
	GSM	Coarse	20 km	6 Hours	132 Hours
Fine	but Sł	nort vs. Co	arse but	Long (or	Stable)

Our Current Issue

• Officer has to integrate three forecasts based on past experience

Aim of Our Study: Integrated Guidance

- Integrating models based on data in past
- Enabling Smart Forecast Operation !

Current Projects

Simulation-Based Machine Learning

Prediction

