Classification of Global Ocean SAR Images for Broader Applications

Chen Wang, Alexis Mouche, Bertrand Chapron

Laboratoire d'Océanographie Physique et Spatiale, Ifremer, Brest, France

Pierre Tandeo IMT Atlantique, Lab-STICC, UBL, Brest, France

Justin Stopa

Department of Ocean Resources and Engineering, University of Hawaii at Manoa, Hawaii, USA

Douglas Vandemark

Ocean Processes Analysis Laboratory, University of New Hampshire, New Hampshire, USA

Ralph Foster

Applied Physics Laboratory, University of Washington, seattle, USA

Background: SAR Basics

Azimuth

Nange

Ground swath

Synthetic Aperture Radar (SAR):

- Passive remote sensing
 - Nearly all weather capability
 - Day-and-night capability
 - Measure 2-D images
- Side-looking, usually right
 - \circ 20°-50° incidence angle
 - Range resolution: Rr=c/2B (radar frequency)
 - Azimuth resolution: Ra=L/2 (synthetic) Look angle θ
- 2-D images of Earth surface
 - High-resolution: meter-scale
 - Wide coverage: 20-400 km
 - Sensitive to **cm-scale** sea surface roughness

Background: SAR imaging of ocean surface

Background: Ocean SAR & Applications

Satellite	Year	Band & wavelength (cm)
SEASAT	1978	L-band (23.5)
ERS-1/2	1991-2003	C-band (5.7)
Radarsat-1	1995-2012	C-band (5.7)
Envisat	2002-2012	C-band (5.7)
ALOS-1	2008-2011	L-band (23.5)
Cosmo-SkyMed	2007-	X-band (3.1)
TerraSAR-X	2007-	X-band (3.1)
Radarsat-2	2007-	C-band (5.7)
TanDEM-X	2010-	X-band (3.1)
ALOS-2	2014-	L-band (23.5)
Sentinel-1	2014-	C-band (5.7)
Gaofen-3	2016-	C-band (5.7)
Radarsat Constellation	2019-	C-band (5.7)

Ocean surface processes

- Surface waves: O(100-600 m)
- Internal waves: O(0.3-5 km)
- Internal tides: *O*(10-20 km)
- Currents : O(1-100 km)
- Oceanic fronts: *O*(1-400 km)
- Eddies: *O*(1-200 km)
- Bathymetry: O(5-50 m)

Atmospheric boundary layer processes

- Surface winds: O(<1 km)
- Roll vortices: O(0.6-10 km)
- Convective cells: O(0.6-10 km)
- Gravity waves: O(1-10 km)
- Rain cells: *O*(0.3-200 km)
- Atmospheric fonts: *O*(1-400 km)

Others

- Biogenic slicks: $O(<100 \text{ km}^2)$
- Mineral oils: $O(<100 \text{ km}^2)$
- Icebergs: O(< 1 km)
- Sea ice

.

Brand-new: Sentinel-1 wave mode

lfremer

Bretagne-Pays de la Loire École Mines-Télécom

60°E 120°E 180° 120°W 60°W 0°

Spatial gridded monthly average of Sentinel-1A WV2 acquisitions in 2016 and 2017. The color denotes number of SAR images in each 5° by 5° grid box

Sentinel-1 (S-1) wave mode (WV)

- C-band SAR satellite constellation
 - S-1 A starting in 2016, S-1 B in 2017
 - S-1 C&D in the near further

• Global wave mode acquisition

- Default operating over open ocean
- $\circ~~20\times20$ km, 5 m resolution SAR images
- Two incidence angles: 23° (WV1), 36.5° (WV2)
- ~30,000 images/month/satellite/mode
 - Nearly global and systematic
 - Gaps in time and space

- Coverage very good in Pacific, Indian
 Ocean, and Southern Oceans
- Captures many different types of ocean surface processes

Brand-new: km-scale processes

- These ocean surface processes are obviously distinguishable
- Could we properly define these geophysical phenomena?
- How to automatically classify these geophysical phenomena?
 - A challenge for traditional methods that use hand-created parameters
 - Machine/Deep-learning is the future

Labelled dataset: TenGeoP-SARwv

TABLE 1 SAR in	mage numbers of the labelled	dataset for each class in every	month of 2016
----------------	------------------------------	---------------------------------	---------------

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
POW	406	407	408	409	406	408	410	409	409	409	408	411	4,900
WS	406	409	403	407	404	391	396	398	397	398	384	404	4,797
MCC	396	384	370	384	385	365	386	388	380	391	384	385	4,598
RC	398	399	398	395	398	391	395	393	393	396	394	390	4,740
BS	398	394	395	398	397	339	397	398	397	400	398	398	4,709
SI	387	150	282	396	396	392	393	393	396	396	396	393	4,370
IB	399	417	308	146	58	29	10	14	12	29	159	399	1,980
LWA	137	137	138	220	201	95	214	144	207	207	241	219	2,160
AF	360	282	301	348	363	234	361	377	378	367	364	365	4,100
OF	61	85	64	102	131	60	116	135	96	108	132	109	1,199
Total	3,348	3,064	3,067	3,205	3,139	2,704	3,078	3,049	3,065	3,101	3,260	3,473	37,553

10 commonly observed phenomena from Sentinel-1 wave mode (Wang et al., 2019, GDJ)

Handy-selected dataset: TenGeoP-SARwv (<u>https://doi.org/10.17882/56796</u>)

- 10 geophysical classes
- >1000 images/class
- Single-labelling
- Almost monthly-balanced

Deep-CNN classifier: CMwv model

Overall accuracy of training (solid lines) and validation (dashed lines) shown in each 5 epoch for WV1 (blue lines) and WV2 (red lines), respectively.

- Overall accuracy on validation part reaches 0.98 for both WV1 and WV2.
- Effectiveness of fine tuning Inception v3 based on small training dataset.

¹Szegedy et al., 2015, Rethinking the Inception Architecture for Computer Vision.

Deep-CNN classifier: extracted features

INT Atlantique Bretagne-Pays de la Lo École Mines-Télécom

Two-dimensional scatter plots of the extracted 2048 image features decomposed by t-SNE¹ over the validation part vignettes for (a) WV1 and (b) WV2. The 10 geophysical classes are marked with different colors.

- Each class of the ten is well clustered and distinct from the others
- Extracted image features by CMwv should effective to distinguish the SAR images
- Distances between two clusters are not measures of the model performance

Deep-CNN classifier: model performance

- Assessment dataset: 5000 vignettes of WV1 and WV2, respectively
- ► Evaluate the classification results by visual inspection.
- > Special category of the others (TO).

Normalized confusion matrix of classification results over the assessment dataset for (a) WV1 and (b) WV2.

Deep-CNN classifier: model performance

recall · n	number of correctly predicted				
recuit	number of truth				
nracision	number of correctly predicted				
precision	• number of predicted				
Escora ·	2*precision *recall				
rscore.	precision + recall				

Correctly predicted: B Truth: A+B Predicted: B+C Recall: B/(A+B) Precision: B/(B+C) Fscore: (2*R*P)/(R+P)

Table 1: CMwv recall, precision and F-score metrics for each of the 10 geophysical categories when applied to WV1 (upper) and WV2 (lower) vignette detection.

	POW	WS	MCC	RC	BS	SI	IB	LWA	AF	OF
D	0.47	0.83	0.80	0.93	0.95	0.90	0.97	1.00	0.95	1.00
Recall	0.39	0.83	0.85	0.93	0.89	0.96	0.92	1.00	0.94	1.00
Precision	1.00	0.77	0.76	0.88	0.88	0.96	0.16	0.87	0.39	0.02
	0.98	0.96	0.94	0.80	0.91	0.96	0.18	0.79	0.38	0.02
F-score	0.64	0.80	0.78	0.90	0.91	0.93	0.27	0.93	0.56	0.04
	0.56	0.89	0.89	0.86	0.90	0.96	0.30	0.88	0.54	0.04

• WS, MCC, RC, BS, SI and LWA have high Fscore for both WV1 and WV2.

• Other classes need to be improved in the future classification models

Classified RC (Left) v.s. GPM rain precipitation (Right)

Geophysical validation: Sea ice

Classified SI (a-c)

а

60°E 120°E 180° 120°W 60°W 0°

- Atmospheric conditions of detected rolls are **distinct** from the overall average conditions
- Stronger surface wind: 5-17 m/s, centred at 9 m/s
- Less unstable Air-Surface temperature difference: -4.5-0.5 °C, centred at -2 °C
- Slightly unstable to near-neutral (expected): -0.02-0.005, centred at -0.0075

Most Puzzling – what's a few degrees in wind direction amongst friends?

- Orientation of the OLE direction with respect to surface is expected to be -15 deg.
- Lies between Surface and Geostrophic wind atop ABL
- But we see subtropical shift to OLE field that swings past surface wind direction????

Broader application: MABL roll-cell transition

- Unstable for cells, near neutral for rolls
- Quite distinct separation
- Transitions between rolls and cells
- Should allow access to air-sea T

Broader application: MABL states

Summary & New questions

- Key geophysical ocean surface phenomena
 - Automatic classification benefits from **deep learning techniques**
- Biggest new results related to MABL rolls
 - Preliminary on prevalence (20-30% estimate), expected atmospheric conditions, roll wavelength and orientation.
 - Theoretical support in progress for the 'unexpected' roll orientation
- Separate studies on roll-cell transition, MABL state estimation, as well as many others...

Future directions (of many)

- From single-labelling to multi-labelling
- Include more geophysical categories (ocean surface processes)
- From wave mode SAR data to wide-swath SAR data
- Understand SAR imaging limitations
- Joint- analysis with other remote-sensed ocean data

Thanks for your attention !

E-mail: Chen.Wang@ifremer.fr