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Overview

* The basics of Neural ODEs and similarity with data assimilation methods

 ML-based approach for model bias correction

e Discussion : possible use of Neural ODEs



Neural ODE

An approximate map x — y with continuous dynamics of hidden units (Chen et al., 2018)
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Neural ODEs can be used to
fit and extrapolate time series
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(b) Latent Neural Ordinary Differential Equation



Training in Neural ODE

Loss function depends on all z over the integration period
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* The implementation is straightforward with standard ODE solvers



Similarity with adjoint method in data assimilation

Loss function in 4-dimensional variational method (4D-Var)
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Extension of Neural ODE : learning from time series

Neural ODE : Map from x = y (z(ty) — z(t;) in hidden state)

- Equivalent to neural networks

Neural controlled differential equation (Neural CDE) : Map from z(t,, tq, ... ty—1) — Z(ty)

- Equivalent to recurrent neural networks
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(“path” X is the interpolation of the data series xg, x4, ...)

The further extension of Neural CDE using rough-path theory :
Neural Rough Differential Equations (Neural RDE) (Morrill et al., 2021)



Model bias correction problem

“Model” in atmosphere/ocean study = (mostly) Knowledge-based model

Components :

- Dynamics

- Moist convection

- Small-scale topography
- Turbulence

- Cloud microphysics

- etc.

Model equations are always imperfect
— hybrid modeling approach may improve the accuracy

dX
— =) +g(X) +e

f : Knowledge-based model

g : Data-driven model



Hybrid modeling of spatio-temporal chaos

Pathak et al. (2018)

Hybrid modeling by combining

an imperfect knowledge-based model and a ML-based (Reservoir computing) model

Pure ML-based model :
X1 = Q(Xt»---)
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Hybrid modeling was demonstrated
on Lorenz63 and Kuramoto-Sivashinsky model experiment

Training data : True time series generated by X;,1 = Firye (Xt)

< partial, noisy and temporally sparse observation in real case



ML-based prediction using data assimilation

ML-based prediction based on noisy and irregularly sampled y

by the combination with DA

given G(x),y°?5(0..T)
estimate x2(0...T)

given x2(0...T)
estimate G(x) -

Initialization: W

______________________________

DA step

Fix W, Estimation of x% . using y°

ML step Q ) |

Fix x7.;-, Estimation of W

Stop if converged

(Brajard et al. 2019)
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>¢Loss function is weighted by error covariance matrix P obtained by DA step




Use of ML for model bias correction

Brajard et al. (2019) : ML model for the whole forecast function

Xk+1 = Glxg)

ML model for correcting the knowledge-based model f (x)

k+1

k+1
Xg+1 = Xg T fx(t))dt + G(xg) or  Xg41 =G <xk + j f(x(t))dt »xk>
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Estimation of bias correction term G(x; ) from forecasts x,{ and analyses x7

has been demonstrated with various modeling methods

- Danforth and Kalnay (2008) : Reduced-order linear function using Singular Value Decomposition

- Bonavita and Laloyaux (2020) : Neural Network using analyses obtained by 4D-Var



Previous experiment

Nature run : Lorenz96 + additional term

d

Exk = X1 (K41 — Xg—2) — xx + F + faaq(x)

additional term ( = negative model bias)
faad(x) = 0.2x3 1 (Xg41 — Xp—2)

Observation : At = 0.05 (Amemiya et al., in prep.)

Vi = X + € e~N(,R)

(Imperfect) Forecast model

d
Exk = Xg—1(Xg41 — Xp—2) — X + F




Implementation

Step 1: Estimation of bias correction function Step 2: Data assimilation with corrected forecasts
forecast observation for(jccast observation
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Bias correction methods

Comparison of different models for g(x{+1, )
- Polynomial regression

- Neural Network
- LSTM
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The limitation of Neural Network model

Observation and analysis time interval At > Numerical integration dt

l

Bias correction term may not simply correspond to f,43q4(Xx)

1. Direct addition

k+1

Xk+1 = fx(@))dt + G(x)

k

- forecast time series have jumps every At

2. Linear approximation

Xp1 = JRH [f(X(t)) +Aitg(xk)] dt

k

- large error when model state rapidly evolves during At (e.g. weather radar)

— what if we can directly model the tendency term?



Discussion: the use of Neural ODEs

Model bias correction with data assimilation :
training with the analysis and forecast {xf, x“}

* Linear regression and neural networks
— estimate the correction term every At

* Neural ODE
— estimate the possible missing term directly

Xir1 = fk - (f(x@®) + g(x(®))) at

known model equation unknown missing term
= Neural ODES trained with {xf,x“}




