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Overview

• The basics of Neural ODEs and similarity with data assimilation methods 

• ML-based approach for model bias correction 

• Discussion : possible use of Neural ODEs 



Neural ODE

𝑧0 = ℓ𝜃
2(𝑥)

𝑦 = ℓ𝜃
1 (𝑧𝑇)

𝑧𝑡 = 𝑧0 + න
0

𝑡

𝑓𝜃 𝑧𝑠 𝑑𝑠

An approximate map 𝒙 → 𝒚 with continuous dynamics of hidden units (Chen et al., 2018)

Maps ℓ𝜃
1 , ℓ𝜃

2 and a function 𝑓𝜃 :
specified by neural networks 

𝑧𝑡+1 = 𝑧𝑡 + 𝑓(𝑧𝑡 , 𝜃𝑡)

Residual Neural Networks :
Discrete dynamics 

Neural ODEs can be used to 
fit and extrapolate time series



Training in Neural ODE

Loss function depends on all 𝑧 over the integration period 

𝐿 𝑧 𝑡1 = 𝐿 𝑧0 +න
𝑡0

𝑡1

𝑓 𝑧 𝑡 , 𝑡, 𝜃 𝑑𝑡

To obtain 𝜕𝐿/𝜕𝑧0 and 𝜕𝐿/𝜕𝜃, 
“adjoint” 𝐚 𝑡 ≡ 𝜕𝐿/𝜕𝒛(𝑡) is used

𝑑𝐚 𝑡

𝑑𝑡
= −𝐚 𝑡 𝑇

𝜕𝑓(𝒛(𝑡), 𝑡, 𝜃)

𝜕𝒛

𝐚 𝑡 is obtained by backward integration of the ODE
starting from 𝐚 𝑡1 = 𝜕𝐿/𝜕𝒛(𝑡1)

𝜕𝐿/𝜕𝜃 can be obtained by another integration 

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝜃
= −𝐚 𝑡 𝑇

𝜕𝑓(𝑧 𝑡 , 𝑡, 𝜃)

𝜕𝜃

* The implementation is straightforward with standard ODE solvers 

(Chen et al., 2018)

* Backward integration is separated into 
periods between each pair of observation time 



Similarity with adjoint method in data assimilation
Loss function in 4-dimensional variational method (4D-Var)

𝐿 =
1

2
𝒙0 − 𝒙𝒃

𝑇
𝑩−1 𝒙0 − 𝒙𝑏 + 𝐻 𝒙𝑛 − 𝒚𝑛

𝑇𝑹−1(𝐻(𝒙𝑛) − 𝒚𝑛)

Optimization of the initial state 𝑥0 given the observation 𝑦𝑛 uses 𝜕𝐿/𝜕𝑥0

𝑥: model state

𝑦: observation 

𝑩: background error covariance

𝑹: observation error covariance

𝐻: observation operator𝑑𝒙

𝑑𝑡
= 𝒇(𝒙)

Model equation  

𝑴𝑘
𝑻 =

𝜕𝓜

𝜕𝒙

𝑇

Forward and adjoint operator 
𝑯: tangent linear operator of 𝐻

𝒙𝑘+1 =𝓜 𝒙𝑘 = 𝒙𝑘 +න
𝑡𝑘

𝑡𝑘+1

𝑓 𝑥 𝑡 𝑑𝑡

𝜕𝐿

𝜕𝒙0
= 𝑩−1 𝒙0 − 𝒙𝑏 + 𝑴0

𝑻 𝑴1
𝑻 𝑴2

𝑻… 𝑴𝑛−1
𝑻 𝑯𝑛

𝑻𝑹−1(𝐻(𝒙𝑛) − 𝒚𝑛)

𝜕𝐿

𝜕𝒙𝑘
=

𝜕𝒙𝑘+1
𝜕𝒙𝑘

𝑇
𝜕𝐿

𝜕𝒙𝑘+1
= 𝑴𝑘

𝑻 𝜕𝐿

𝜕𝒙𝑘+1

𝑑𝐚 𝑡

𝑑𝑡
= −𝐚 𝑡 𝑇

𝜕𝑓(𝒛(𝑡), 𝑡, 𝜃)

𝜕𝒛

Continuous adjoint equation



Extension of Neural ODE : learning from time series

Neural ODE : Map from 𝒙 → 𝒚 (𝒛(𝑡0) → 𝒛(𝑡1) in hidden state)

Neural controlled differential equation (Neural CDE) : Map from 𝒛 𝑡0, 𝑡1, … 𝑡𝑁−1 → 𝒛 𝑡𝑁

- Equivalent to neural networks

- Equivalent to recurrent neural networks

𝑧𝑡 = 𝑧0 + න
0

𝑡

𝑓𝜃 𝑧𝑠 𝑑𝑋𝑠

= න
0

𝑡

𝑓𝜃 𝑧𝑠
𝑑𝑋(𝑠)

𝑑𝑠
𝑑𝑠

(“path” 𝑋 is the interpolation of the data series 𝑥0, 𝑥1, …)

The further extension of Neural CDE using rough-path theory :
Neural Rough Differential Equations (Neural RDE)  (Morrill et al., 2021)

(Kidger et al., 2020)



Model bias correction problem 

“Model” in atmosphere/ocean study  = (mostly) Knowledge-based model

- Dynamics 
- Moist convection
- Small-scale topography
- Turbulence
- Cloud microphysics
- etc.

Components : 

Model equations are always imperfect
→ hybrid modeling approach may improve the accuracy

𝑑𝑋

𝑑𝑡
= 𝑓 𝑋 + 𝑔 𝑋 + 𝜀

𝑓 : Knowledge-based model

𝑔 : Data-driven model



Hybrid modeling of spatio-temporal chaos

Pathak et al. (2018)

Hybrid modeling was demonstrated 
on Lorenz63 and Kuramoto-Sivashinsky model experiment

Hybrid modeling by combining  
an imperfect knowledge-based model and a ML-based (Reservoir computing) model

Training data : True time series generated by 𝑋𝑡+1 = ℱtrue 𝑋𝑡

Pure ML-based model : 

𝑋𝑡+1 = 𝒢 𝑋𝑡, ℱ 𝑋𝑡 , …

𝑋𝑡+1 = 𝒢 𝑋𝑡, . . .

Hybrid model : 

⇔ partial, noisy and temporally sparse observation in real case



ML-based prediction using data assimilation

ML-based prediction based on noisy and irregularly sampled 𝑦obs

by the combination with DA 

given     𝒢 𝑥 , 𝑦obs(0…𝑇)
estimate 𝑥a(0…𝑇)

※Loss function is weighted by error covariance matrix 𝑃𝑘
𝑎 obtained by DA step

ML model

given 𝑥a 0…𝑇
estimate 𝒢(𝑥)

ML step

DA step

𝑦obs

𝑥𝑘+1
𝑓

= 𝒢 𝑥𝑘
𝑎

𝑥𝑘+1
𝑎DA

(Brajard et al. 2019) 



Use of ML for model bias correction

𝑥𝑘+1 = 𝑥𝑘 +න
𝑘

𝑘+1

𝑓 𝑥(𝑡) 𝑑𝑡 + 𝒢 𝑥𝑘

Estimation of bias correction term 𝒢 𝑥𝑘 from forecasts 𝑥𝑘
𝑓

and analyses 𝑥𝑘
𝑎

has been demonstrated with various modeling methods

Brajard et al. (2019) : ML model for the whole forecast function 

𝑥𝑘+1 = 𝒢 𝑥𝑘

ML model for correcting the knowledge-based model 𝑓(𝑥)

- Danforth and Kalnay (2008) : Reduced-order linear function using Singular Value Decomposition 

- Bonavita and Laloyaux (2020) : Neural Network using analyses obtained by 4D-Var  

𝑥𝑘+1 = 𝒢 𝑥𝑘 +න
𝑘

𝑘+1

𝑓 𝑥 𝑡 𝑑𝑡 , 𝑥𝑘or



Previous experiment

𝑑

𝑑𝑡
𝑥𝑘 = 𝑥𝑘−1 𝑥𝑘+1 − 𝑥𝑘−2 − 𝑥𝑘 + 𝐹 + 𝑓add(𝒙)

additional term ( = negative model bias )

Nature run : Lorenz96 + additional term 

𝑑

𝑑𝑡
𝑥𝑘 = 𝑥𝑘−1 𝑥𝑘+1 − 𝑥𝑘−2 − 𝑥𝑘 + 𝐹

(Imperfect) Forecast model

𝑓add 𝒙 = 0.2𝑥𝑘−1 𝑥𝑘+1 − 𝑥𝑘−2

𝑦𝑘 = 𝑥𝑘 + 𝜖

Observation : Δ𝑡 = 0.05

𝜖 ∼ 𝑁 (0, 𝑅)

(Amemiya et al., in prep.)



Implementation

Model

𝒙𝑡+1
𝑎 = 𝒙𝑡+1

𝑓
+𝑲 𝒚𝑡+1 − 𝐻 𝒙𝑡+1

𝑓

observationforecast

𝒙𝑡+1
𝑓

Analysis

𝒙𝑡+1 = 𝑴 𝒙𝑡

LETKF

𝒚𝑡+1

𝒙𝑡+1
𝑓

, 𝒙𝑡+1
𝑎 to estimate 𝒢(𝒙𝑡+1

𝑓
, … )

Model

𝒙𝑡+1
𝑎 = ෥𝒙𝑡+1

𝑓
+𝑲 𝒚𝑡+1 − 𝐻 ෥𝒙𝑡+1

𝑓

observationforecast

𝒙𝑡+1
𝑓

Analysis

𝒙𝑡+1 = 𝑴 𝒙𝑡

LETKF

𝒚𝑡+1

Bias correction

෥𝒙𝑡+1
𝑓

= 𝒙𝑡+1
𝑓

+ 𝒢 (𝒙𝑡+1
𝑓

, … )

Step 1: Estimation of bias correction function  Step 2: Data assimilation with corrected forecasts 



Bias correction methods

𝒙𝑡
𝑎 − 𝒙𝑡

𝑓

𝒙𝑡
𝑓 (5,5) (15) (1) 

array size

output

Input
Extended forecast RMSE

Comparison of different models for  𝒢(𝒙𝑡+1
𝑓

, … )

LSTM 

- Polynomial regression
- Neural Network
- LSTM

Forecast time



The limitation of Neural Network model

𝑥𝑘+1 = න
𝑘

𝑘+1

𝑓 𝑥(𝑡) 𝑑𝑡 + 𝒢 𝑥𝑘

Observation and analysis time interval Δ𝑡 ≫ Numerical integration 𝑑𝑡

- forecast time series have jumps every Δ𝑡

2. Linear approximation

→ what if we can directly model the tendency term?  

Bias correction term may not simply correspond to 𝑓add(𝒙)

1. Direct addition 

𝑥𝑘+1 = න
𝑘

𝑘+1

𝑓 𝑥(𝑡) +
1

Δ𝑡
𝒢 𝑥𝑘 𝑑𝑡

- large error when model state rapidly evolves during Δ𝑡 (e.g. weather radar ) 



Discussion: the use of Neural ODEs

𝑥𝑘+1 = න
𝑘

𝑘+1

𝑓 𝑥 𝑡 + 𝑔 𝑥 𝑡 𝑑𝑡

• Neural ODE
→ estimate the possible missing term directly

known model equation unknown missing term

= Neural ODES trained with 𝒙𝑓, 𝒙𝑎

Model bias correction with data assimilation :  

training with the analysis and forecast 𝒙𝑓, 𝒙𝑎

• Linear regression and neural networks
→ estimate the correction term every Δ𝑡


