2021.03.31 IMT-RIKEN Joint seminar Arata Amemiya

Connecting Data Assimilation and Neural ODEs

Arata Amemiya?!, Noboru Isobe?, Takemasa Miyoshi?

1. RIKEN Center for Computational Science
2. The University of Tokyo

Overview

* The basics of Neural ODEs and similarity with data assimilation methods

 ML-based approach for model bias correction

e Discussion : possible use of Neural ODEs

Neural ODE

An approximate map x — y with continuous dynamics of hidden units (Chen et al., 2018)

Maps £5, £5 and a function fj : Residual Network ODE Network
. pe 5 5
specified by neural networks
4
5 Residual Neural Networks : ’
zy = tg(x) Discrete dynamics g3
t 2 .
2 4 e
Zy = Zg + f fo(zs)ds — Zeyr = Ze + f (21, 6t) : }
0 1 y N : [/
_pl
y = £9 (zr) O =g 1 5) 5
Input/Hidden/Output Input/Hidden/Output

Neural ODEs can be used to
fit and extrapolate time series

s Ground Truth
@ Observation

= Prediction

= Extrapolation

(b) Latent Neural Ordinary Differential Equation

Training in Neural ODE

Loss function depends on all z over the integration period

ty
L(z(t)) =1L (zo + | fz(®),t, H)dt)
to

To obtain dL/0z, and 0L /00,

“adjoint” a(t) = dL/0z(t) is used State
|) Adjmnt State
a(t) is obtained by backward integration of the ODE 4‘/
starting from a(t;) = dL/0z(t,) IL : - \.
da(t) r 9f(2(t),t,0) NG / A
d = —a(t) I T | | ! Z ;
t 0z I | | |
Lo (/ tit1 tn
dL /060 can be obtained by another integration (Chen et al., 2018)
d oL . of (z(t),t,0) * Backward integration is separated into
dt oo (20 periods between each pair of observation time

* The implementation is straightforward with standard ODE solvers

Similarity with adjoint method in data assimilation

Loss function in 4-dimensional variational method (4D-Var)

1
L =3[(x0 = x2) B (xo = 2°) + (H(xo) = y) TR (H(xy) — ¥

Model equation

dx

dt

Forward a

T _
K =

oL

x: model state

y: observation

B: background error covariance
R: observation error covariance
H: observation operator

H: tangent linear operator of H

f(x)
nd adjoint operator
lk+1
X = M) =xi+ [f(x®)de
tk
(%)
0x Continuous adjoint equation
0xpe1\ 0L oL da(t of (z(t),t,0
_ (9% o ©) _ _,pr L ED.6.0)
0xi) 0Xp4q 0Xp 41 dt 0z

ax,

Optimizati
oL

0x

on of the initial state x given the observation y,, uses dL/dx,

B (xo—x%) + MY MI MY .. ME_ HTR'(H(x,) — y)

Extension of Neural ODE : learning from time series

Neural ODE : Map from x = y (z(ty) — z(t;) in hidden state)

- Equivalent to neural networks

Neural controlled differential equation (Neural CDE) : Map from z(t,, tq, ... ty—1) — Z(ty)

- Equivalent to recurrent neural networks

w*“ \.\ Hidden state z
k/L/ \I__’j Hidden state z i:::li' ,':::
|

I II|
! [-
T Ly ! L Path X
-"\llrr - i
e i v !

t
4=%+jm@M&
Ax(s) |

Data x

> Time

f@@)

th 12 ts - tn

“ 9 . . .) (Kidger et al., 2020)
(“path” X is the interpolation of the data series xg, x4, ...)

The further extension of Neural CDE using rough-path theory :
Neural Rough Differential Equations (Neural RDE) (Morrill et al., 2021)

Model bias correction problem

“Model” in atmosphere/ocean study = (mostly) Knowledge-based model

Components :

- Dynamics

- Moist convection

- Small-scale topography
- Turbulence

- Cloud microphysics

- etc.

Model equations are always imperfect
— hybrid modeling approach may improve the accuracy

dX
— =) +g(X) +e

f : Knowledge-based model

g : Data-driven model

Hybrid modeling of spatio-temporal chaos

Pathak et al. (2018)

Hybrid modeling by combining

an imperfect knowledge-based model and a ML-based (Reservoir computing) model

Pure ML-based model :
X1 = Q(Xt»---)

/

» Based
Muodel

Y,
. Y A
HYbrld mOdel . u“" = -R; A N I.-"' Knowledge-
4/

Xty1 = g(XtrT(Xt):)

Output Layer

H'L'I-Ilt

uylt + Atf)

b 4

Hybrid modeling was demonstrated
on Lorenz63 and Kuramoto-Sivashinsky model experiment

Training data : True time series generated by X;,1 = Firye (Xt)

< partial, noisy and temporally sparse observation in real case

ML-based prediction using data assimilation

ML-based prediction based on noisy and irregularly sampled y

by the combination with DA

given G(x),y°?5(0..T)
estimate x2(0...T)

given x2(0...T)
estimate G(x) -

Initialization: W

DA step

Fix W, Estimation of x% . using y°

ML step Q) |

Fix x7.;-, Estimation of W

Stop if converged

(Brajard et al. 2019)

DA step

Xl =6x» pa

y0bs
ML step
Tie+1
Xpy = G(X) + € =%, + [M(x)dt,
ML model y
K—=Np=1 N;

LWy = Y Y [0 = xi

k=0 i=l

2
-1
P.f.'

>¢Loss function is weighted by error covariance matrix P obtained by DA step

Use of ML for model bias correction

Brajard et al. (2019) : ML model for the whole forecast function

Xk+1 = Glxg)

ML model for correcting the knowledge-based model f (x)

k+1

k+1
Xg+1 = Xg T fx(t))dt + G(xg) or Xg41 =G <xk + j f(x(t))dt »xk>

k k

Estimation of bias correction term G(x;) from forecasts x,{ and analyses x7

has been demonstrated with various modeling methods

- Danforth and Kalnay (2008) : Reduced-order linear function using Singular Value Decomposition

- Bonavita and Laloyaux (2020) : Neural Network using analyses obtained by 4D-Var

Previous experiment

Nature run : Lorenz96 + additional term

d

Exk = X1 (K41 — Xg—2) — xx + F + faaq(x)

additional term (= negative model bias)
faad(x) = 0.2x3 1 (Xg41 — Xp—2)

Observation : At = 0.05 (Amemiya et al., in prep.)

Vi = X + € e~N(,R)

(Imperfect) Forecast model

d
Exk = Xg—1(Xg41 — Xp—2) — X + F

Implementation

Step 1: Estimation of bias correction function Step 2: Data assimilation with corrected forecasts
forecast observation for(jccast observation
7_’ x{ﬂ Vi1 " X Yet+1

Bias correction

Model
Model %{H = x[+1 t§ (x{+1')
X1 = M(x;) Xep1 = M(x;)
LETKF | — LETKF y
Analysis 1 Analysis 1
_ ~=f o~
— X = x{_l_l + K(yt_,_l — H(x{+1)) — Xy =X+ K(J’t+1 - H(xt+1)

l

{x{H, x%, 1} to estimate g(x[+1,)

Bias correction methods

Comparison of different models for g(x{+1,)
- Polynomial regression

- Neural Network
- LSTM

LSTM
Input array size
x{ (5;5)
pu

Spatial locality
A

(15)

(1)

output
xX¢ — x{
C
Output

RMSE (log scale)

107 4

1072

Extended forecast RMSE

L L

NoCorr

= Linear

PolyFit
Dense
LSTM

T T T
1.5 2.0 2.5

Forecast time

3.0

3.5

4.0

The limitation of Neural Network model

Observation and analysis time interval At > Numerical integration dt

l

Bias correction term may not simply correspond to f,43q4(Xx)

1. Direct addition

k+1

Xk+1 = fx(@))dt + G(x)

k

- forecast time series have jumps every At

2. Linear approximation

Xp1 = JRH [f(X(t)) +Aitg(xk)] dt

k

- large error when model state rapidly evolves during At (e.g. weather radar)

— what if we can directly model the tendency term?

Discussion: the use of Neural ODEs

Model bias correction with data assimilation :
training with the analysis and forecast {xf, x“}

* Linear regression and neural networks
— estimate the correction term every At

* Neural ODE
— estimate the possible missing term directly

Xir1 = fk - (f(x@®) + g(x(®))) at

known model equation unknown missing term
= Neural ODES trained with {xf,x“}

