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Mitigating Sampling Error using Optimal Localisation in Ensemble Data 

Assimilation 
Rebecca Atkinson1, Ian Roustone1, Sue Hughes1, Jonathan Flowerdew2 

1 University of Surrey, UK 
2 Met Office, Exeter, UK 

 
Ensemble data assimilation can be sensitive to sampling errors due to finite ensemble size. 
This is addressed via techniques such as localisation. Current localisation methods are 
typically ad hoc. They assume a fixed shape for the localisation function and may tune its 
parameters based on past data. We define an optimal localisation as one which produces the 
most accurate analysis state for an ensemble which perfectly samples the background 
uncertainty. An improved understanding of the form of and factors that determine the 
optimal localisation could inform better localisation techniques.  
 
A series of theoretical optimal localisations were identified, which provide the optimal 
analysis state when assimilating a single observation. They are expected to remain applicable 
for sufficiently sparse observations. Optimal localisation methods were found for: a fixed 
single true covariance (OSTC), a variable true covariance (OVTC) (a covariance with a 
climatology) and a hybrid of the OVTC. Our hybrid localises the variation from the mean 
covariance. This is different from previous hybrid methods which combine the climatological 
covariance with a localised ensemble covariance using a fixed weight. Numerical experiments 
are performed using an Ensemble Kalman Filter in a framework where the true statistics were 
known. Details of the formulations will be presented along with some recent results.  
 
This work is part of our agenda to apply these localisations to a balanced model and 
investigate the impacts on the accuracy and balance of the analysis state. The atmosphere is 
known to approximately obey balance equations and localisation can have a damaging effect 
on the balance of the analysis state. One hypothesis is that the hybrid OVTC localisation will 
impact the balance less negatively than the other localisations because it preserves the mean 
covariances.  
 
  



Ensemble-based data assimilation via nonlinear couplings 
Ricardo Baptista, Youssef Marzouk 

Center for Computational Engineering, Massachusetts Institute of Technology, 
Cambridge, MA, USA 

 
We consider the Bayesian inference step at the core of filtering and smoothing 
problems for high- dimensional and non-Gaussian state-space models. While the 
ensemble Kalman filter and smoother can yield robust estimates of the state in many 
settings, these algorithms are limited by linear transformations and are generally 
inconsistent with the Bayesian solution in the large-sample limit. To generalize these 
approaches, at each assimilation step we propose transforming the non-Gaussian 
prior ensemble into a col- lection of posterior samples via a deterministic coupling, 
represented as a composition of nonlinear transport maps. This approach avoids any 
form of importance sampling and is thus applicable to high-dimensional systems. In 
this presentation, we propose an adaptive algorithm for estimating transport maps, 
given prior ensembles with small sample sizes. Our algorithm gradually enriches the 
complexity of the map to carefully balance the bias due to a finite parameterization 
with the estimation variance. We also show how to construct nonlinear couplings for 
both filtering and smoothing problems in a scalable way, exploiting both conditional 
independence and decay of correlation/dependence. We demonstrate the 
performance of our algorithms on chaotic dynamical systems with non-Gaussian 
statistics.  
  



Continuum Covariance Propagation for Understanding Variance Loss in 
Advective Systems 

Shay Gilpin1,2, Tomoko Matsuo2,1, Stephen E. Cohn3 
1Department of Applied Mathematics, University of Colorado Boulder, USA 

2Smead Aerospace Engineering Sciences, University of Colorado Boulder, USA 
3Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, 

Greenbelt, Maryland, USA 
 

At the heart of modern data assimilation schemes is covariance propagation. In this 
work, we show that for advective dynamics the covariance propagation by itself 
typically causes significant spurious loss of variance, even at full rank. Standard 
methods for covariance propagation, such as in the Kalman filter, difference across 
the diagonal of the covariance matrix. This results in spurious dissipation and loss of 
variance because its continuum counterpart, the diagonal of the kernel of the 
covariance operator, is a characteristic surface for advective dynamics. In essence, 
most methods are differencing across a shock-like surface.  
To demonstrate this, we first study continuum covariance propagation by analyzing 
the covariance evolution equation for advective dynamics. The behavior of this 
evolution equation changes abruptly as the correlation length tends to zero since the 
diagonal is a characteristic surface. Our numerical experiments then show that the 
variance lost during numerical propagation greatly exceeds that traditionally expected 
from numerical dissipation. In certain cases, the numerical behavior for short 
correlation lengths approximates the limiting continuum behavior at zero correlation 
length well, while approximating the continuum behavior for short, nonzero correlation 
lengths poorly. Our results suggest that developing local covariance propagation 
methods may prove useful in ameliorating the variance loss observed in data 
assimilation schemes.  
  



A subspace iterative ensemble smoother for solving DA and inverse problems  
Geir Evensen 

NORCE and NERSC, Norway  

The use of iterative smoothers has led to significant improvements when solving nonlinear 
and high- dimensional inverse problems, e.g., within parameter estimation or history matching 
of oil-reservoir models. Thus, there is now extensive operational use of iterative smoothers in 
the petroleum industry. One can expect a similar level of improvement with the introduction of 
iterative smoothers in ensemble DA applications. This presentation will consider a new 
subspace formulation (Raanes et al., 2019; Evensen et al., 2019) of the EnRML method by 
Chen and Oliver (2013). The new formulation is a stochastic iterative ensemble smoother 
suitable for big models and data. Particularities of the method include the elimination of pseudo 
inversions of large matrices that were problematic in the formulation by Chen and Oliver 
(2013), fast convergence, the computation of the transform matrix is independent of the state 
vector, and it is suitable for use with local analysis. The new method includes an ensemble 
sub-space projection of measurement errors and measurements and the impact of this 
projection will be addressed.  

 
References 
Chen, Y., and D. S. Oliver, Levenberg-Marquardt forms of the iterative ensemble smoother for 

efficient history matching and uncertainty quantification, Computat Geosci, 17, 689–703, 
2013.  

Evensen, G., Sampling strategies and square root analysis schemes for the EnKF, Ocean 
Dynamics, 54, 539–560, 2004.  

Evensen, G., P. Raanes, A. Stordal, and J. Hove, Efficient implementation of an iterative 
ensemble smoother for data assimilation and reservoir history matching, Frontiers in 
Applied Mathematics and Statistics, 5, 47, 2019, 
https://www.frontiersin.org/article/10.3389/fams.2019.00047.  

Raanes, P. N., A. S. Stordal, and G. Evensen, Revising the stochastic iterative ensemble 
smoother, Nonlin. Processes Geophys, 26, 325–338, 2019, https://doi.org/10.5194/npg-26-
325-2019.   

A subspace iterative ensemble smoother for solving DA and inverse problems

Geir Evensen (NORCE and NERSC, geev@norceresearch.no)

The use of iterative smoothers has led to significant improvements when solving nonlinear and high-
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One can expect a similar level of improvement with the introduction of iterative smoothers in ensemble
DA applications. This presentation will consider a new subspace formulation (Raanes et al., 2019;
Evensen et al., 2019) of the EnRML method by Chen and Oliver (2013). The new formulation is a
stochastic iterative ensemble smoother suitable for big models and data. Particularities of the method
include the elimination of pseudo inversions of large matrices that were problematic in the formulation
by Chen and Oliver (2013), fast convergence, the computation of the transform matrix is independent
of the state vector, and it is suitable for use with local analysis. The new method includes an ensemble
sub-space projection of measurement errors and measurements and the impact of this projection will
be addressed.
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The most expensive computation the evaluation of the model-ensemble prediction Yi = g(Xi). All other computations in this
algorithm are linear in the number of measurements m as well as the number of state variables n. The projection ⇧ subtracts
the ensemble mean. The evaluation of Si, is most easily computed by writing ⌦

T
S
T
i = Y

T and computing the LU factorization

of ⌦
T
i followed by m back substitutions to a cost O(mN2). In line 10, one needs to compute the matrix multiplication SiWi

which is mN2. It is possible to approximately compute the inversion in line 11 to a cost O(mN2) using the ensemble subspace
algorithm discussed in Evensen (2004); Evensen et al. (2019). Finally, in line 12, we obtain the updated model ensemble in nN2

floating-point operations.
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High-dimensional Data Assimilation using Regularization and Iterative  
Resampling with the Local Particle Filter  

Jonathan Poterjoy 
University of Maryland, Colleg Park, MD, USA  

 
Particle filters (PFs) are sequential Monte Carlo methods that can solve data 
assimilation problems characterized by non-Gaussian error distributions for prior 
variables or measurements. Recent efforts to apply PFs for high-dimensional 
geophysical models have resulted in localized PFs, which significantly reduce the 
number of particles required for applications of large spatial dimension. Localization, 
however, is often insufficient for preventing particle weight collapse for real 
geophysical problems, like numerical weather prediction. For example, it does not 
prevent the local collapse of weights when provided with a dense network of accurate, 
independent measurements or when model error is not well characterized. Both 
situations can lead to filter divergence even for univariate problems. This presentation 
introduces several approaches for maintaining filter stability under the above 
circumstances, which can be characterized broadly as “large sampling error” regimes. 
The first set of approaches adopts regularization in a manner similar to past particle 
filtering studies; i.e., by including an extra term in the weight calculations to place a 
lower-bound on effective ensemble size or maximum particle weights. The second set 
of strategies extend regularization to factor the posterior density, thus allowing for a 
sequence of iterative resampling steps – each step using a larger effective ensemble 
size than if a single resampling were performed. In addition to preventing filter 
divergence in large sampling error regimes, iterative resampling helps alleviate some 
of the assumptions used to derive the Poterjoy (2016), Poterjoy et al. (2019) local PF 
algorithms. In the absence of localization or other particle mixing parameters, the 
iterative resampling converges to the Bayesian solution as sample size increases, thus 
maintaining this property of the original local PF. Results will be presented for low-
dimensional applications, including one that mimics feature displacement errors in 
weather models, as well as a high-dimensional general circulation model in the NCAR 
Data Assimilation Research Testbed.  
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