The impact of different model error covariance matrices on the performance of a particle filter applied to a coupled ocean-atmosphere climate model

Phil Browne
PJ van Leeuwen

University of Reading, Department of Meteorology,
School of Mathematical and Physical Sciences

25 Feb 2015
Proposal densities

$$p(x \mid y) = \frac{p(x)p(y \mid x)}{p(y)}$$

The freedom in the choice of q is how we design methods to avoid the curse of dimensionality.
Proposal densities

\[p(x \mid y) = \frac{p(x)p(y \mid x)q(x, y, z)}{p(y)q(x, y, z)} \]

The freedom in the choice of \(q \) is how we design methods to avoid the curse of dimensionality.
Basic Particle Filter
Equivalent weights particle filter
A fully nonlinear particle filter which has not been found to suffer from filter degeneracy. See van Leeuwen [2010] and Ades and van Leeuwen [2012].

Required:
- Observations y with error covariance matrix R
- (linear) observation operator H
- 2 tuning parameters
- Model *error* covariance matrix Q
Coupled Ocean-Atmosphere GCM [Gordon et al., 2000].
Total of 9 prognostic variables:

<table>
<thead>
<tr>
<th>Atmosphere</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zonal and meridional winds, temperature, humidity and surface pressure</td>
</tr>
<tr>
<td>resolution $2.5,^\circ$ with 19 levels.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ocean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zonal and meridional flow, temperature and salinity</td>
</tr>
<tr>
<td>Resolution $1.25,^\circ$ with 20 levels.</td>
</tr>
</tbody>
</table>

State vector dimension $2,314,430$.
Twin experiment

- Assimilate daily SST data over a period of 6 months
- Full coverage of SSTs – 27,370 variables
- 72 model timesteps between observations
- R diagonal
\[dx = f(x)dt + d\beta \]

where

\[d\beta \sim \mathcal{N}(0, Q) \]

- Can always make improvements here
The big question – modelling Q.

\[\text{dx} = f(x)\text{dt} + \text{d}\beta \]

where

\[\text{d}\beta \sim \mathcal{N}(0, Q) \]

- Can always make improvements here
- No control variable transform known for the model error covariance matrix of this coupled system
The big question – modelling Q.

$$dx = f(x)dt + d\beta$$

where

$$d\beta \sim \mathcal{N}(0, Q)$$

- Can always make improvements here
- No control variable transform known for the model error covariance matrix of this coupled system
- We estimate Q by looking at a long model run
The big question – modelling Q.

$$dx = f(x)dt + d\beta$$

where

$$d\beta \sim \mathcal{N}(0, Q)$$

- Can always make improvements here
- No control variable transform known for the model error covariance matrix of this coupled system
- We estimate Q by looking at a long model run
- 3D, staggered grids, multiple variables, bathymetry, real data
 \implies no elegant way of doing matrix-vector multiplication with Q
- Need for sparse BLAS routines to make efficient
Figure: Stencil for localisation matrix
Figure: Stencil for localisation matrix
Matrix properties

- Symmetric so stored in upper triangular form
- $N = 2,314,430$
- $\text{NNZ} = 411,266,537$
- up to 1000 non-zeros per row.
- average of 354 non-zeros per row.
- 16Gb on disk.
- load Q took 228.75 seconds
Matrix-vector multiplication timings

- Serial coord_matmul_t: 1.05s
- Parallel openmp_matmul_t (24 threads):
- SPARSE BLAS matmul (12 threads):

LIBRSB (Recursive sparse blocks) Martone et al. [2010]
Matrix-vector multiplication timings

- Serial coord_matmul_t: 1.05s
- Parallel openmp_matmul_t (24 threads): 0.56s
- SPARSE BLAS matmul (12 threads):

 LIBRSB (Recursive sparse blocks) Martone et al. [2010]
Matrix-vector multiplication timings

- Serial coord_matmul_t: 1.05s
- Parallel openmp_matmul_t (24 threads): 0.56s
- SPARSE BLAS matmul (12 threads): 9.44E-002s

LIBRSB (Recursive sparse blocks) Martone et al. [2010]
Two different Q matrices

We estimate Q from a long model run.

\[\text{Cov}(X_1) = \Lambda_1^{1/2} \Sigma_1 \Lambda_1^{1/2} \]

\[Q_1 \propto \Lambda_1^{1/2} \Sigma_1^2 \Lambda_1^{1/2}. \]
Two different Q matrices

We estimate Q from a long model run.

\[\text{Cov}(X_1) = \Lambda_1^{1/2} \Sigma_1 \Lambda_1^{1/2} \]

\[Q_1 \propto \Lambda_1^{1/2} \Sigma_1 \Lambda_1^{1/2} \cdot \]

\[X_2 := X_1 - \bar{X}_1 \]

\[\text{Cov}(X_2) = \Lambda_2^{1/2} \Sigma_2 \Lambda_2^{1/2} \]

\[Q_2 \propto \Lambda_2^{1/2} \Sigma_2 \Lambda_2^{1/2} \cdot \]
Correlations between atmospheric U and ocean V

Q_1

Q_2
Correlations between atmospheric humidity and ocean θ

Q_1

Q_2

Riken, Japan ISDA 2015
Phil Browne
Q for a climate model and the EWPF
Atmospheric pressure variables in $\Lambda^{\frac{1}{2}}$

Q_1

Q_2
Eastward surface winds in $\Lambda^{\frac{1}{2}}$

Atmosphere U, sigma level = 0.996

Q_1

Q_2

Riken, Japan ISDA 2015 Phil Browne

Q for a climate model and the EWPF
Sea water temperature at the 4th depth level in $\Lambda^{1/2}$
Trajectories

Q_1

Q_2

for a climate model and the EWPF
Trajectories

Q_1

Q_2

Riken, Japan ISDA 2015
Phil Browne

Q for a climate model and the EWPF
Rank histogram of observed SSTs

Histogram 22 - Ocean Theta level 1 surface

Q_1

Histogram 22 - Ocean Theta level 1 surface

Q_2
Rank histogram of atmospheric zonal velocities

Q_1

Q_2

Histogram 10 - Atmosphere V level 13 200k p*
RMSE errors and EWPF parameters

Observed SSTs

Unobserved Surface Humidity

Stochastic ensemble

- strong nudging, $\kappa = 1.0$

- weak nudging, $\kappa = 1.0$

- strong nudging, $\kappa = 0.8$
Conclusions

- The equivalent weights particle filter continues to show no signs of filter degeneracy when the model has size 2.3×10^6
- Having a more physically realistic Q matrix has allowed much smaller scaling to be used and appears more robust
- We have only considered twin experiments – what will Q look like in the real system?
- New ideas and lots of research into Q is necessary for both particle filters and Weak Constrained methods.
Thank you for listening

