近似ベイズ計算法を用いた 生物数理モデルの構築と展望

Laboratory for Physical Biology, RIKEN Quantitative Biology Center (QBiC) & RIKEN Center for Developmental Biology (CDB)

謝辞

猪股秀彦, 笹井芳樹

RIKEN Center for Developmental Biology (CDB)

ライフサイエンスのチャレンジ

- 分子や相互作用の知識の蓄積
- 働きを理解するには不十分
- シミュレーションによる再構成 => 理解
- しかし、基礎方程式は不確実
- 数理モデル = 仮説の構築
- パラメータ値の不可知性

からだの基本的な3つの軸

- Anterior-Posterior (AP axis、前後軸)
- Dorsal-Ventral (DV axis、背腹軸)
- Left-Right (左右軸)

Copyright © 2006 Nature Publishing Group Nature Reviews | Molecular Cell Biology

Hans Spemann

背腹軸パタン形成のスケーリング性

Xenopus laevis

- 胚のサイズの違いにもかかわらず、背腹軸のパタン形成はプロポーションが維持されている。
- 背腹軸のパターンを体のサイズに適応させる仕組みは何か?
- 「スケーリング性のあるパタン形成」

実験結果については→ Inomata, H., Shibata, T., Haraguchi, T., & Sasai, Y. (2013). Cell, 153(6), 1296–1311.

濃度勾配が位置情報を与える

Wolpert's "French flag" model

morphogen gradient

 $|\bigcirc$

000000000000

 \bigcirc

0000

position

モルフォゲン

000

 \bigcirc

Wolpert, L. Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25, 1–47 (1969).

OO

O|O

 \bigcirc

拡散係数と分解レートが濃度勾配を決める

source of morphogen

The morphogen gradient:

$$C(x) = \frac{J}{\sqrt{D\lambda}} e^{-\frac{x}{\sqrt{D/\lambda}}}$$

The diffusion distance

$$\ell = \sqrt{D/\lambda} \; (\mu m)$$

• 体のサイズは濃度勾配に影響しない!

BMP の濃度勾配が背腹軸を決めている

The BMP activity is quantified by the nuclear phospho-Smad1 (pSmad1) signal.

Inomata, H., Shibata, T., Haraguchi, T., & Sasai, Y. (2013). Cell, 153(6), 1296–1311.

背腹軸に沿ったモルフォゲン濃度勾配

 疑問:体のサイズに対して、いつも同じ割合で変化 する濃度勾配は、どのように作られるか?

Sizzled, a inhibitor for Chordin protease, stabilizing Chordin and BMPs-Chd complexes

Inomata, H., Shibata, T., Haraguchi, T., & Sasai, Y. (2013). Cell, 153(6), 1296–1311.

背腹軸パタン形成の数理モデル

- (**A**) ADMP
- (C) Chordin
- (AC) ADMP-Chd
- (BC) BMP4-Chd
- (**B**) BMP4
- (S) Sizzled
- (1) BMP-dependent production
- (2) Degradation
- (3) Association between BMPs & Chordin
- (4) Sizzled-regulated Chordins degradation
- (5) Diffusion
- (6) Chd production at dorsal end

$$\begin{aligned} \frac{\partial C}{\partial t} &= V_{\rm C} \frac{K_{\rm C}^{h_{\rm C}}}{K_{\rm C}^{h_{\rm C}} + (A+B)^{h_{\rm C}}} - \lambda_{\rm C} \frac{C}{1+S/K_{\rm i} + (C+BC+AC)/K_{\rm m}} - k_{\rm chdbmp}C \cdot B - kC \cdot A + D_{\rm chd}\Delta C \\ \frac{\partial B}{\partial t} &= V_{\rm B} \frac{(A+B)^{h_{\rm B}}}{K_{\rm B}^{h_{\rm B}} + (A+B)^{h_{\rm B}}} - \lambda_{\rm B}B + \lambda_{\rm C} \frac{BC}{1+S/K_{\rm i} + (C+BC+AC)/K_{\rm m}} - k_{\rm chdbmp}C \cdot B + D_{\rm bmp}\Delta B \\ \frac{\partial A}{\partial t} &= V_{\rm A} \frac{K_{\rm A}^{h_{\rm A}}}{K_{\rm A}^{h_{\rm A}} + (A+B)^{h_{\rm A}}} - \lambda_{\rm B}A + \lambda_{\rm C} \frac{AC}{1+S/K_{\rm i} + (C+BC+AC)/K_{\rm m}} - k_{\rm chdomp}C \cdot A + D_{\rm admp}\Delta \\ \frac{\partial S}{\partial t} &= V_{\rm S} \frac{(A+B)^{h_{\rm S}}}{K_{\rm S}^{h_{\rm S}} + (A+B)^{h_{\rm S}}} - \lambda_{\rm S}S + D_{\rm szl}\Delta S \\ \frac{\partial BC}{\partial t} &= -\lambda_{\rm C} \frac{BC}{1+S/K_{\rm i} + (C+BC+AC)/K_{\rm m}} + k_{\rm chdbmp}C \cdot B + D_{\rm chdbmp}\Delta BC \\ \frac{\partial AC}{\partial t} &= -\lambda_{\rm C} \frac{AC}{1+S/K_{\rm i} + (C+BC+AC)/K_{\rm m}} + k_{\rm chdadmp}C \cdot A + D_{\rm chdadmp}\Delta AC \\ D\nabla C|_{x=0} &= -J_{\rm C} \\ D\nabla C|_{x=0} &= -J_{\rm C} \\ D\nabla C|_{x=0} &= D\nabla A|_{x=0} &= D\nabla S|_{x=0} &= D\nabla S|_{x=0} &= 0 \\ D\nabla C|_{x=1} &= D\nabla A|_{x=0} &= D\nabla S|_{x=0} &= D\nabla S|_{x=0} &= 0 \\ D\nabla C|_{x=1} &= D\nabla B|_{x=1} &= D\nabla A|_{x=1} &= D\nabla S|_{x=1} &= D\nabla S|_{x=1} &= 0 \end{aligned}$$

パラメータ

V ,K ,h $\lambda_{\rm B}, \lambda_{\rm S}$ (2) Degradation $k_{\rm BC}$ (3) Association between BMPs & Chordin $\lambda_{c}, K_{m}, K_{i}$ (4) Sizzled-regulated Chordins degradation $D_{C}, D_{R}, D_{A}, D_{S}, D_{CB}, D_{CA}$ (5) Diffusion J_c (6) Chordin production at dorsal end L(7) embryo size

パラメータの数 >> 変数の数

- [BMP] = K_C,背領域の境界, x_D
- [BMP] = K_B,腹領域の境界, x_v

 $b = \{x_{D^{(1500)}}, \dots, x_{D^{(500)}}, x_{V^{(1500)}}, \dots, x_{V^{(500)}}\}$

実験結果を説明するパラメータの推定

近似ベイズ法を用いたパラメータ推定

Repeate

Liepe, Juliane, Liepe, Juliane, Paul Kirk, Paul Kirk, Sarah Filippi, Sarah Filippi, Tina Toni, Chris P Barnes & Michael P H Stumpf "A framework for parameter estimation and model selection from experimental data in systems biology using approximate Bayesian computation". Nat Protoc 9, 439–456 (2014).

背腹境界の分布の推移

embryonic coordinate

データ駆動で本質を見抜く

A		*	No.	di la	-	1		beb	-	15			with		Mar		*		Q.E.		1					
•		2	1		1			niet.	in the second	10	1	1	200	5.24		- 33	A.					ini.	-		ake.	10
۲	3	4			-	-	1	in the								1 50		-	*		*		-		and a	
-							No.			-					罴			-						No.	188 A	
	100	1	30	1	50		1		照			1									1				Net	
	-	1	ø	>	h		4														3	*		1		
>		9		y	23		1		42	1		No.		5	Sec.			2		Se.						
0	1	Ø	()	V		1	4	1		-			1				A	1	Webe		-		-			
	-		R.	~	R.	-															×.	2				
	-	-	\$	-	2			2		1									彩							
	6	(1	Ş		ra.	۲		(3	1									*	1						
	-		15	1	R	3	P			1		Sea.				1										
	-			2	3	1		R		y	1	-				100								32		
1	-		-	*	30	-			-		2								*				1			
	1	0	4	1	S.L		2	a.	-		127		3										A.			
		-	Ą	~	46			1		æ		1	3	R.	Ċ,											
	-	1	3	هم		1		13	13		-	14		1		6	F						100			
۲		٥		Y		A	۷	12		1	1		8			3	A	-		-	*	-	di.		-	
2	***		?		-	1		2	ŝ,				24		8	4	600	h								
1	-	١	*	200	8			2	*	2	1		1	\$		3	6	5		*	4					
1	-	6	6	Z	23	3	۲		5	y			54	2	٥ }		۲	53	6				-			
۲	1	۲		V	9	1	9		10	۲				1	10	2	١	1	(4		1			
0	1	9	¥	2			0	9	20	2	1	5	2)		\$	Ì	۲	-	2	3	9	4		d'		1
	1		1	-	10	1		26	4		2			2	the second	E	(iiii	200	and the	-	1	(2	1		- Aler
1		Č.	1		题		-	1		m	**		92	0	62	1		-	a)	-	9	P	1	Ê		
	no	Ś	20		1	1		2	-	8.00	2		e g	-	4	-		R.	2	á		4	3	1		
4	4	<	3	1	E	6	<		1	¥	1	1	1	\$	1	1	<	1	1	1	(5	1	š	1	

$\frac{\partial C}{\partial t} = V_{\rm c} \frac{K_{\rm c}^{h_{\rm c}}}{K_{\rm c}^{h_{\rm c}} + (A+B)^{h_{\rm c}}} - \lambda_{\rm c} \frac{C}{1 + S/K_{\rm i} + (C+BC+AC)/K_{\rm m}} - kC$	$C \cdot B - kC \cdot A + D\Delta C$
$\frac{\partial B}{\partial t} = V_{\rm B} \frac{(A+B)^{h_{\rm B}}}{K_{\rm B}^{h_{\rm B}} + (A+B)^{h_{\rm B}}} - \lambda_{\rm B}B + \lambda_{\rm C} \frac{BC}{1 + S/K_{\rm i} + (C+BC+AC)/K_{\rm i}}$	$kC \cdot B + D\Delta B$
$\frac{\partial A}{\partial t} = V_A \frac{K_A^{h_A}}{K_A^{h_A} + (A+B)^{h_A}} - \lambda_B A + \lambda_C \frac{AC}{1 + S/K_i + (C+BC+AC)/k}$	$-kC \cdot A + D\Delta A$
$\frac{\partial S}{\partial t} = V_{S} \frac{(A+B)^{h_{S}}}{K_{S}^{h_{S}} + (A+B)^{h_{S}}} - \lambda_{S}S + D\Delta S$	
$\frac{\partial BC}{\partial t} = -\lambda_{\rm C} \frac{BC}{1 + S/K_i + (C + BC + AC)/K_m} + kC \cdot B + D\Delta BC$	
$\frac{\partial AC}{\partial t} = -\lambda_c \frac{AC}{1 + S/K_i + (C + BC + AC)/K_m} + kC \cdot A + D\Delta AC$	
↓データ駆動型の	縮約
スケーリング性の数理構	4時で、
データ解析から抽出す	3