Data Assimilation Seminar RIKEN AICS, Kobe, Japan, January 20, 2015

Development of an Ensemble-Based Data Assimilation System with a Coupled Atmosphere–Ocean GCM

> Nobu Komori, ¹ T. Enomoto, ^{1,2} T. Miyoshi, ^{1,3,4} A. Yamazaki, ¹ A. Kuwano-Yoshida, ¹ and B. Taguchi

¹ Application Laboratory (APL), JAMSTEC, Yokohama, Japan
² Disaster Prevention Research Institute, Kyoto University, Uji, Kyoto, Japan
³ RIKEN Advanced Institute for Computational Science, Kobe, Japan
⁴ Department of Atmospheric and Oceanic Science, University of Maryland, College Park, Maryland, U.S.A.

E-mail: komori@jamstec.go.jp

Outline of Talk

- Observing system research with ALERA
- ALEDAS2 & ALERA2
- **CFES**–LETKF ensemble DA system
 - Motivations, Experimental settings
- Preliminary results of CLERA-A
 - Comparison with ALERA2
 - Comparison with **EnOFES**
 - Ensemble statistics between SST and other variables
- Summary

Observing System Researches with ALERA

ALERA

AFES-LETKF experimental ensemble reanalysis (Miyoshi & Yamane, 2007, MWR; Miyoshi et al., 2007, SOLA)

- first (or second) application of LETKF to full AGCM
 - AFESTI59L48M40
- a product of collaboration among JMA, JAMSTEC and CIS
 - observations used in NWP at JMA
- from 18UTC I May 2005 to 12UTC 11 Jan 2007
- provides analysis ensemble spread as error estimates
- available from http://www.jamstec.go.jp/esc/research/oreda/products/

Miyoshi et al. (2007a, SOLA)

850-hPa (u,v) and standardized U850 spread

Effects of buoy observation

ALL the TRITON buoys (blue Δ) observe surface pressure

ONLY the TAO buoys on the equator (red Δ) observe surface pressure

Enomoto et al. (2013, Springer)

Influence of MISMO sondes

ALERA (w/o MISMO sondes)

with MISMO sondes

MISMO Oct–Dec 2006 in the Indian Ocean

Influence on typhoon genesis

Moteki et al. (2011, QJRMS)

Impact of Arctic buoys

Inoue et al. (2009, GRL)

ALERA

Lag correlation between mean and spread

Enomoto et al. (2010, GRL)

ALEDAS2 and ALERA2

ALEDAS and ALEDAS2 compared

	ALEDAS	ALEDAS2
AFES version	2.2	3.6
Resolution	TI59 L48	T119 L48
Ensemble size	40	63+I
Boundary conditions	NOAA OISST weekly I°	NOAA OISST daily 1/4°
Covariance localization	21x21x13	400 km/0.4 lnp
Spread inflation	0.1	
Obs. compiled by	JMA	NCEP

Error covariance localization by distance

ALERA

ALERA2

Miyoshi et al. (2007b, SOLA)

ALERA2

ALERA2 streams

Resent studies using ALERA/ALERA2

- Inoue, J., T. Enomoto, and M. E. Hori, 2013: The impact of radiosonde data over the ice-free Arctic Ocean on the atmospheric circulation in the Northern Hemisphere. *Geophys. Res. Lett.*, 40 (5), 864–869.
- Kuwano-Yoshida, A., and T. Enomoto, 2013: Predictability of explosive cyclogenesis over the northwestern Pacific region using ensemble reanalysis. *Mon.Wea. Rev.*, 141 (11), 3769–3785.
- Yamazaki, A., J. Inoue, K. Dethloff, M. Maturilli, and G. König-Langlo: Impact of radiosonde observations on forecasting summertime Arctic cyclone formation. J. Geophys. Res.: Atmos., submitted.

The 'great' arctic cyclone of 2012 (from NASA)

CFES-LETKF Ensemble DA System

Motivations: from ALERA to CLERA

- Remove underestimation of ensemble spread near the sea surface
- Improve SST–precipitation correlation
- Evaluate observations including ocean buoys
- Replace AFES with CFES
- Atmospheric DA only

Forecast of Typhoon Sinlaku (2008)

Kunii & Miyoshi (2012, Wea. Forecasting)

Motivations: from ALERA to CLERA

- Remove underestimation of ensemble spread near the sea surface
- Improve SST–precipitation correlation
- Evaluate observations including ocean buoys
- Replace AFES with CFES
- Atmospheric DA only

Lag Corr. of Prec. and SST over Western Pacific (winter)

Motivations: from ALERA to CLERA

- Remove underestimation of ensemble spread near the sea surface
- Improve SST–precipitation correlation
- Evaluate observations including ocean buoys
- Replace AFES with CFES
- Atmospheric DA only

Enomoto et al. (2013)

CFES

- Coupled GCM for the ES
 - AFES + OFES
 - Komori et al. (2008)
- CFES mini
 - AFES:TI19 L48
 - OFES: 0.5°x0.5° 54 levels
 - Coupling: every hour
 - Richter et al. (2010, GRL), Taguchi et al. (2012, JC), Bajish et al. (2013, SOLA), Nagura et al. (2013, JGR), Sasaki et al. (2013, JC)

Forecast–Analysis Cycle

6-hour Cycle

Conduct 9-hour ensemble forecasts from time t-6 to t+3. Ensemble mean of forecasts at time t is the first guess (gues). Calculate analysis (anal) at time t from the forecasts and observations (obs) between time t-3 and t+3.

Experimental settings

- Ensemble size: 63 members + control
- Assimilation: atmospheric observation (PREPBUFR) only
- Integration from I August to 30 September 2008
- Atmospheric ICs: from ALERA2
- Oceanic ICs: from ensemble simulation with OFES (EnOFES)
 - Single spin-up run: CORE v2 (1948–2007), ALERA2 (2008–)
 - Ensemble run: each member of ALERA2 (2 June 2008–)
- Result (CLERA-A) is compared with ALERA2 and EnOFES.

Ensemble spread of oceanic ICs (I Aug)

Sea-ice concentration

Comparison with ALERA2

Difference in surf. temp. & SLP (2-month ave.)

Ens. Mean of Surf. Temp. (CLERA-A - ALERA2)

Ens. Mean of Sea Level Pressure (CLERA-A - ALERA2)

Ensemble spread of T & Q (~975 hPa, 2-month ave.)

・元々小さい場所では最大で40%程度増加

Ensemble spread of T & Q (~850 hPa, 2-month ave.)

・バイアスの影響で場が変わり減少する場所も

Comparison with EnOFES

Ensemble spread of SST (I Aug & 30 Sep)

Zonal-mean ensemble spread

EnOFES

CLERA-A

Ensemble spread of ocean temp.

EnOFES

CLERA-A

Ensemble Statistics between SST and Other Variables

Ensemble autocorrelation of SST

Ens. Autocorr. of Surf. Temp. (Lag: 05 d)

Ens. Autocorr. of Surf. Temp. (Lag: 15 d)

Vertical corr. b/w SST and air temp.

~850 hPa

Ens. Corr. b/w Surf. Temp. & Air Temp. (σ =0.86)

Ens. Corr. b/w Surf. Temp. & 2m Air Temp.

~500 hPa

Lag-covariance b/w SST and precip. (40-day ave.)

Vertical corr. b/w SST and ocean temp.

Ens. Corr. b/w SST & Ocean Temp. (193 m, 2008.09.30.00Z)

Ens. Corr. b/w SST & Ocean Temp. (54 m, 2008.09.30.00Z)

Corr. b/w NINO3.4 SST & ocean temp. clera-a EnOFES

EQ-

15S-

30S

120F

-0.7

-0.9

150F

-0.3

-0.5

1200

0.3

150

0.1

-0.1

90

0.5

600

0.7

3ÔW

0.9

9ÓW

9Ô¥

0.5

0.3

60%

0.7

30

0.9

0.5

0.3

6ÓW

0.7

3ÓW

0.9

Corr. w.r.t. NINO3.4 2m air temp. (2-month ave.)

Color: 2m Air Temperature Arrows: 10m Winds (> 0.1) Contours: Surface pressure (C.I.: 0.05)

Summary

- The CFES-LETKF ensemble DA system has been constructed.
 - Ocean ensemble creates perturbed surface BC.
 - Ensemble spread in the lower troposphere is successfully increased.
 - Ensemble spread of ocean surface is slightly increased by atmosphere—ocean coupling.
 - Coupled DA system captures the basin-scale structure of ocean temperature.
 - Optimal parameters for DA (e.g., localization scales) could be different b/w atmospheric and coupled DA systems.
- Additional assimilation of oceanic observation is necessary.

