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1. Introduction
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1.1. What is Land Surface Model (LSM)?
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$ (energy balance is not described in the figure).
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Most of LSMs are vertical one dimension model.
Runoff is parameterized and passed to the different model (river routing model)




rainfall | photosynthesis

1.2. Purpose of Land Data Assimilation System (LDAS)
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1.3. Satellite-based LDAS
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1.4. Outline

. Capability and limitation of passive microwave observation of land

. Aland data assimilation system for simultaneous estimation of soil
moisture and vegetation dynamics based on microwave observations

. Application of LDAS to mega-drought monitoring and prediction




2. Capability and limitation of passive microwave
observation of land




2.1. Microwave radiative transfer of land

Canopy radiative transfer
first term (tau-omega model)

second term T, = (1—R,)T, exp(-VOD, ) +
(1-,)T, (1—exp(-VOD,) +
attenuated R,(1-,)T.(1-exp(-VOD,))exp(-VOD,)

third term

VOD: Vegetation optical depth
VOD =Db X (vegetation water content)

b is@Species-dependent)parameter packson and schmugge, 199

Land surface emission Q1:How large?
TB == ET

e=f ( roughness)

Q2:Can we observe soil moisture under dense canopy? How dense?




2.2.1. Field Experiment (1)
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2.2.2. Field Experiment (2)

We planzed various kinds of crops & tree.
oa

[Sawada et al., 2016 IEEE TGARS]
[Sawada et al., in prep]




2.3. Species dependent
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VOD: Vegetation optical depth Vegetation effects are
VOD =Db X (vegetation water content) species-independent to
bis SpeCieS-dependent parameter [sackson and Schmugge, 1991] Vegetation type in C-band!

[Sawada et al., 2016 IEEE TGARS]
[Sawada et al., in prep]




2.4. Effect of soil moisture under canopy
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Index of Soil Wetness (ISW: «koike et al. [2004]) IS
the proxy of soil moisture and
operationally used by JAXA.

We have believed that soil moisture can
be retrieved under VWC < 2.0 [kg/m2]

$

We believe that soil moisture can be
retrieved under VWC < 0.5 [kg/m2]

[Sawada et al., 2016 IEEE TGARS]
[Sawada et al., in prep]




2.5. Summary of this section

Q1: How strongly is passive microwave radiative transfer dependent to
vegetation type and structure?

- In C-band, the effect of vegetation structure is minimal

Q2: Can we observe soil moisture under dense canopy? How dense?

- In C-band, the capability to observe soil moisture under dense canopy is
smaller than we expected.







3.1. LSM - EcoHydro-SIiB
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[Wang et al., 2009]
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Based on SiB2 [Sellers et al., 1996]
Including precise hydrological scheme [wangetal., 2009 With Dynamic vegetation

model.

- We have already confirmed that this model can simulate water cycle and
vegetation dynamics (crop productions) correctly in the data rich basin

[Sawada et al., 2014, Water Resour. Res.]




3.2. Purpose of our LDAS

Hydrological Ecological

T T |

Reichle and Koster [2005]: Catchment LSM & SMMR I I Jarlan et al. [2008]: ECMWF CTESSEL & MODIS

Li et al. [2012]: NOAA LSM & AMSR-E
Jia et al. [2013]: CLM3 & AMSR-E
Su et al. [2013]: ECMWF IFS & ASCAT I

|

Dual-pass data assimilation system Coupled Land and Vegetation Data
p Y * Assimilation System (CLVDAS)

Initial Condition

YS"’i‘gg thkﬁ[szg?é , 2009]: [Sawada and Koike, JGR-A, 2014]
[Sawada et al., JGR-A, 2015]

Stockli et al. [2008, 2011]: simple phenology model & MODIS I I
Bateni et al. [2014]: SEB & SEVIRI
Bacour et al. [2015]: ORCHIDEE & MODIS

Parameter
Optimization

Bandara et al. [2015] : JULES & SMOS
I I Livneh and Lettenmaier [2012]: ULM & MODIS

h———————————J

- LDAS for parameter optimization and state valuable adjustment of
both hydrological and ecological part of LSM is developed.




3.3. Coupled Land and Vegetation Data Assimilation System
(CLVDAS)
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Variance-based global sensitivity analysis (Sobol’'s method) isateli et al. 2010]

i i< i< j<k
— Total variance of the model’'s output is decomposed to the variance that come
from each parameter uncertainty.

Parameter ensemble A Parameter ensemble AB(1) Parameter ensemble B
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(Recently, some researchers indicated this method is very inefficient and some other
useful methods are proposed (e.g. razavi and Gupta, 2016])




3.4.2. Parameter Selection (2) - Results

Parameter Sensitivity to TBs (18.7GHz Horizontal)
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[Sawada and Koike, JGR-A, 2014]

Blue: West Africa (Hot and dry)
Orange: Mongolia (cold and dry)
Gray: California (US) (temperate)

— In dry area, we can improve the
performance by tuning only
hydrological parameters

— We can reduce the number of the
calibrated parameters by using this
method.




3.5.1. Parameter Optimization (1) - algorithm
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[Duan et al., 1992]

Observed Brightness Temperature
from AMSR-E, AMSR2 —

- CLVDAS optimizes parameters by minimizing the difference between
modeled and observed brightness temperature.




3.5.2. Parameter Optimization (2) -Results
@ West Africa
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- Optimization improves the skill of estimating surface soil moisture and vegetation
dynamics at the same time.




3.6.1. State adjustment (1) - algorithm
Genetic Particle Filter1(C_5IfF)
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3.6.2. State adjustment (2) - Results
@ Yanco, AUS

Grey: Open loop
Blue: Genetic Particle Filter
Red: observation
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[Sawada et al., JGR-A, 2015]

- We can dramatically reduce the uncertainty of LAl estimation
—->We can inversely estimate root-zone soil moisture from the observation of
vegetation dynamics on land surface.




4. Application to disaster monitoring and prediction




4.1. Case study: Horn of Africa drought

EXECUTIVE BRIEF

HORN of AFRICA DROUGHT

2011

A

ull
EMERGENCY 4 August 201 |

HIGHLIGHTS

+ |2.4 million people are in urgent need of assistance in Djibouti, Ethiopia, Kenya and Somalia.
+  Neighbouring countries — South Sudan, Sudan, and Uganda — all require support to ensure the crisis in the Horn of Africa
does not spill aver their borders.

+  FAO funding gap as of 4 August 201 1: USD 1 11.8 million.
PRIORITY AGRICULTURAL CHALLENGES

# protecting livestock assets by preventing livestock disease outbreaks to ensure the continued functioning of vital

livestock export markets.
*  enabling farmers to plant during the coming rainy season to ensure the availability of food in the next season.
*  increasing households’ access to food through cash-forework that has a longer-term benefit in terms of rehabilitating vital
agricultural infrastructure.

[FAO, 2011]

2032810
| 20102011

[Anderson et al., 2012]

—> Totally, 12.4 million people suffered from food shortage.
- We cannot have the access to many ground observations to develop the

drought prediction system.




4.2. Strategy of ecohydrological drought forecast
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4.3.1. Results (1) 2010-2011 drought in reanalysis

LAl anomaly of 2010-2011 droughts in “reanalysis”.
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[Sawada and Koike, JGR-A, in revision]




4.3.2. Results (2) 2010-2011 drought Iin reanaIyS|s

Time series of anomaly
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- Root-zone soil moisture and LAI have longer memory of the past precipitation

deficit than surface soil moisture.




4.3.3. Results (3) Predictions: starting from 1 Sep 2010

Leaf Area Index timeseries Gray: Climatorogy
Green: Horn of Africa drought (reanalysis)
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4.3.3. Results (3) Predictions: starting from 1 Oct 2010

Leaf Area Index timeseries Gray: Climatorogy
Green: Horn of Africa drought (reanalysis)
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4.3.3. Results (3) Predictions: starting from 1 Jan 2011

Leaf Area Index timeseries Gray: Climatorogy
Green: Horn of Africa drought (reanalysis)
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4.3.3. Results (3) Predictions: starting from 1 Mar 2011

Leaf Area Index timeseries Gray: Climatorogy
Green: Horn of Africa drought (reanalysis)
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4.3.3. Results (3) Predictions: starting from 1 May 2011

Leaf Area Index timeseries Gray: Climatorogy
Green: Horn of Africa drought (reanalysis)
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4.3.4. Summary of the skill of predicting LAl
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[Sawada and Koike, JGR-A, in revision]

—> In the prolonged drought, obtaining the initial conditions significantly
contributes to predict ecological conditions in drought.
- We can say it has already been drought before the UN'’s alart.
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5. Future suggestion




5.1. Hydrological modeling complexity

» complexity

1-D LSM
&
River routing model
(offline)

1-DLSM 3-D LSM
& 1-D soil moisture
River routing model &
(online) 2-D groundwater

[Yamazaki et al., 2010] [Condon and Maxwell, 2013]

(©

[Wang et al., 2009]

1km <1km
With river routing With river routing
River-groundwater interaction Explicit groundwater flow

10'100km 10-100km

With river routing (<1km)

LDAS researches have focused only on simplest 1-D LSM




5.2.1. Hyper-resolution hydrological modeling (1)

Global groundwater simulation with horizontal resolution of 1km

Simulated Water Table 5 |sealevel
(Units: meter) z -
- <= 0.25
Em025-25
Em25-5
E35-10
£910-20
20 - 40
40 - 80
. > 80
_'

-10° 0°

[Fan et al., 2013]




5.2.2 Hyper-resolution hydrological modeling (2)

b. Water Table Depth
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[Condon and Maxwell, 2015]




5.3. Potential benefits of hyper-resolution LDAS

Horizontal impact of data assimilation.
Maximizing the potential of high resolution satellite data

Important processes which are not explicitly considered in the
traditional LSM (e.g., slope driven water-plant interactions)

Counterpart of high resolution atmospheric model (e.g.,
NICAM) and contribution to a study on land-atmosphere
interactions.




Microwave satellite observations are very useful for LDAS because of
their sensitivity to soil moisture and all-weather capability.

However, there are still many uncertainties in microwave radiative
transfer on vegetated land surfaces and the products issued by JAXA
and NASA may have large systematic bias.

Our CLVDAS can improve the skill of ecohydrological LSM to simulate
both soil moisture and vegetation dynamics by directly assimilating
microwave brightness temperatures. We found the assimilation of
vegetation dynamics positively impacted to sub-surface soil moisture
estimations

CLVDAS is useful to monitor and predict droughts in data-scarce regions.
We are heading to hyper-resolution hydrological modeling era. Hyper-

resolution LDAS might be useful to deepen our understanding of land
processes.



