Impacts of dense and frequent surface observations on a sudden severe rainstorm forecast: A case of an isolated convective system

Data Assimilation Seminar 2016. 11. 24 *<u>Yasumitsu Maejima</u> (RIKEN AICS)

Corroborated with:

Masaru Kunii (MRI, JMA / RIKEN AICS)

Juan J. Ruiz (U. of Buenos Aires/ RIKEN AICS)

Hirotaka Kure (Meisei electric co. ltd)

Kae Sato (Meisei electric co. ltd)

Takemasa Miyoshi (RIKEN AICS / U. of Maryland)

0.1 Introduction

CREST: Innovating "Big Data Assimilation" technology for revolutionizing very-short-range severe weather prediction

- We aim to innovate "Big Data Assimilation" technology for fully taking advantage of big data. *(Miyoshi et al. 2016; BAMS)*
 - \Rightarrow High dense and frequency observation data is important.

http://www.nict.go.jp/publication/NICT-News/1301/02.html より引用

0.2 Importance of atmospheric condition near surface

(Meteorological research institute press release)

0.3 Original surface stations (POTEKA II)

Observe every 30seconds

Wind direction [deg]	Temperature [°C]
Wind speed [m/s]	Pressure [hPa]
Relative humidity [%]	Rainfall sensitivity (0 / 1)
Radiation [W/m ²]	Rainfall amount [mm]

0.4 Sudden severe rainstorm event on Sep. 11, 2014

- Target event: A sudden severe rainstorm by an isolated convection system on September 11, 2014.
- Performed NHM-LETKF (Miyoshi and Aranami 2006, Kunii 2014), with assimilating PAWR and surface observations (POTEKA II) every 30 seconds.
- Investigate impacts of dense and frequent surface observations on a sudden severe rainstorm forecast.

A series of the experiments

		Assimilated observation
1	1-km DA experiment	• PAWR
2	1-km DA experiments and forecasts (Comparison with observation data)	 PAWR PAWR+POTEKA(Not bias corrected) PAWR+POTEKA(Bias corrected)
3	1-km and 100-m DA experiments (Comparison with resolution)	• PAWR
4	100-m DA experiments and forecasts (Comparison with observation data)	PAWRPAWR+POTEKA(Bias corrected)

Models:

Forecasts: JMA-NHM (Saito et al., 2001, 2006)

DA-cycles: NHM-LETKF (Miyoshi and Yamane 2006, Kunii 2014).

		Assimilated observation
1	1-km DA experiment	• PAWR
2	1-km DA experiments and forecasts (Comparison with observation data)	 PAWR PAWR+POTEKA(No bias corrected) PAWR+POTEKA(Bias corrected)
3	1-km and 100-m DA experiments (Comparison with resolution)	• PAWR
4	100-m DA experiments and forecasts (Comparison with observation data)	PAWRPAWR+POTEKA(Bias corrected)

1.1 The workflow of DA experiments at **1-km resolution**

- Ref \geq 5dBZ \Rightarrow Assimilated raw PAWR data
- Ref < 5dBZ \Rightarrow Assimilated 5dBZ

(Aksoy et al. 2010)

1.3 Radar reflectivity at 2-km elevation (Analysis)

1.4 Vertical cross-section at 34.68N (Analysis)

 Simulated a local severe rainstorm by an isolated convection system on September 11, 2014 by 1-km NHM-LETKF.

		Assimilated observation
1	1-km DA experiment	• PAWR
2	1-km DA experiments and forecasts (Comparison with observation data)	 PAWR PAWR+POTEKA(No bias corrected) PAWR+POTEKA(Bias corrected)
3	1-km and 100-m DA experiments (Comparison with resolution)	• PAWR
4	100-m DA experiments and forecasts (Comparison with observation data)	PAWRPAWR+POTEKA(Bias corrected)

2.0 The workflow of DA experiments at 1-km resolution

2.0 The workflow of DA experiments at 1-km resolution

2.1 Bias correction for POTEKA II

- There is a significant bias in obs. by POTEKA II
 - (Ex.) Relative humidity : Under estimated Temperature : Over estimated
 - A bias correction method developed with the Kobe observatory data as the unbiased ground truth.
- Plot POTEKA II (x) and Kobe observatory data (y)
- Calculate the gradient (*A*) and intercept(*B*) by least squares method.
- Calculate the corrected values (x_c) by following formula $x_c = Ax + B$

(Remark : x and y are 10 minutes averaged values)

- Original POTEKA II data (x_{30}) : $x_{30} = x + x'$
- Corrected POTEKA II data (x_{c30}) : $x_{c30} = x_c + x'$

2.2 The results of bias correction

Before correction After correction Relative humidity [%] Relative humidity [%] AMeDAS AMeDAS others: POTEKA II others: POTEKA II 03:00 06:00 09:00 12:00 15:00 18:00 21:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 Temperature [°C] Temperature [°C] **AMeDAS** AMeDAS others: POTEKA II others: POTEKA II 03:00 06:00 09:00 12:00 15:00 18:00 21:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00

2.3 The amount of observations in a DA cycle

2.4 Radar reflectivity at 2-km elevation (Analysis)

2.5 Surface relative humidity [%] (Analysis)

2.6 Liquid water path [kg/m²] (Analysis)

2.7 Equivalent potential temperature[K] (34.695N) (Analysis)

CTRL

NOBC

2.8 Surface rainfall amount in forecast experiments ($\Delta x=1$ km)

Initial time: 0830 JST

- Simple bias correction algorism was developed.
- Surface data assimilation contributed to **improve RH**, **LWP and rainfall intensity**.

		Assimilated observation
1	1-km DA experiment	• PAWR
2	1-km DA experiments and forecasts (Comparison with observation data)	 PAWR PAWR+POTEKA(No bias corrected) PAWR+POTEKA(Bias corrected)
3	1-km and 100-m DA experiments (Comparison with resolution)	• PAWR
4	100-m DA experiments and forecasts (Comparison with observation data)	PAWRPAWR+POTEKA(Bias corrected)

3.1 Resolution dependence in the DA experiment

• DA experiment at **100-m resolution** was performed, and the active convective system was simulated in detail.

		Assimilated observation
1	1-km DA experiment	• PAWR
2	1-km DA experiments and forecasts (Comparison with observation data)	 PAWR PAWR+POTEKA(No bias corrected) PAWR+POTEKA(Bias corrected)
3	1-km and 100-m DA experiments (Comparison with resolution)	• PAWR
4	100-m DA experiments and forecasts (Comparison with observation data)	PAWRPAWR+POTEKA(Bias corrected)

4.1 The workflow of DA experiments at **100-m resolution**

4.2 Radar reflectivity at 2-km elevation (Analysis)

34.75N

34.7N

CTRL-100

^{34.6}N 135.1E 135.15E 135.2E 135.25E 135.3E

+ POTEKA Radar reflectivity [dBZ] 08:10:00JST 0810JST

[dBZ]

4.3 Workflow of the forecast experiments

4.4 Radar reflectivity (2-km elevation): Initial: 0830 JST

135.1E

135 3E

135 4E

195 51

135 1

195 48

135 5E

Observation

4.5 Vertical cross section : Initial: 0830 JST

10000

8000

6000

+POTEKA

135.4E

135.4E

135.4E

135.4E

135.5E

135.5E

135.5E

135.5E

CTRL

10000 8000 0830JST 6000 (Analysis) 4000 2000 135.1E 135.4E 135 2E 135 3E 10000 8000 0840JST 6000 (10-min fcst) 4000 2000 135.1E 135.3E 135.4E 10000 8000 0850JST 6000 (20-min fcst) 4000 2000 135.1E 135.3E 135.4E 135.2E 10000 8000 0900JST 6000

4000

2000

135.1E

135 2E

135 3E

135.4E

(30-min fcst)

Observation

4.6 Bias score in forecasts

Elevation 2kmThreshold 25dBZ

4.7 Vertical cross-section in 10-min. forecast (Initial 0830JST, 34.69N)

EPT

&

Wind

(QG)

[K]

- We performed and succeeded 30-seconds update LETKF cycles with PAWR and surface observations.
- Reproduced a local severe rainstorm by an isolated convection system on September 11, 2014.
- Bias corrected surface DA contributed to improve rainfall forecast.
- In forecasts, it remains some issues.

Thank you for your attention !