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Outline

1. Data assimilation for structural materials

2. Adjoint method (4D-Var)

3. Application of the adjoint method to a phase-field model

4. Uncertainty quantification of estimates based on a second-order 

adjoint method

5. Validation of the proposed method through twin experiments

6. Summary

Today’s talk is based on the following paper:

Ito, S., H. Nagao, A. Yamanaka, Y. Tsukada, T. Koyama, M. Kano, and J. Inoue, 
Data assimilation for massive autonomous systems based on a second-order 
adjoint method, Phys. Rev. E, 94, 043307, doi:10.1103/PhysRevE.94.043307, 
2016.
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Bayesian Statistics, State Space Model
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Integration of numerical simulations and observational data based on Bayesian statistics

Numerical Simulations Observation Data

Integration

Weather Forecasting Tsunami

Kano et al. [2015]

Maeda et al. [2015]

Higuchi et al. [2011]

Data Assimilation (DA)

Afterslips
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Development of Materials Integration System (SIP-MI)

伊藤 伸一 SHIN-ICHI ITO
東京大学地震研究所
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Shimokawabe et al. [2011]

Development of DA beneficial to the phase-field method

Parameter estimation, Experimental design, etc.

DA for Structural Materials

Estimation of parameters and internal states in materials

Simulation of martensitic transformation (Prof. Koyama)

Transformation from austenite to ferrite (Prof. Yamanaka)

Forward / Inversion problems of cracks

estimate predict

Estimation of creep rupture via elastic-plastic dynamics

predict

assimilate

H. Nagao @ RIKEN AICS, Feb. 7, 2017



7

DA for Systems Having Large Degrees of Freedom

Numerical simulations 
in continuous fields

Massive computations

Phase-field model
(dendrite growth)

Shimokawabe et al. [2011]

Navier-Stokes equation
(K-H instability)

Springel [2009]

Sequential DA based on such as Kalman filter or particle filter

requires memory of O(N2) (N: the degree of freedom)

e.g.

N ~ 109 ⇒ ~ 104 Pbytes

cf.  K computer  ~    1 Pbytes

DA method applicable to 
systems having large degrees 

of freedom is needed
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Search                  that best 
matches observation data
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State & Parameter Estimation based on Adjoint Method

posterior

System model Observation model

Bayes’ theorem

Cost function

Adjoint equation
cost function

posterior prior likelihood
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We develop a DA method that can estimate not 
only optimum but also its uncertainty even in the 
case of a system having large degrees of freedom
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State & Parameter Estimation based on Adjoint Method

Phase-field model Sequential Bayesian filters

Computational time

Adjoint method (4D-Var)

Needs massive 
computational costs 
due to fine grids

 O N
e (N: degree of freedom)

Searches randomly 
parameter space

Can estimate optimum 
and its uncertainty

Computational time ( )O N

Estimates only optimum  
that maximizes posterior

Cannot evaluate 
uncertainty of optimum

H. Nagao @ RIKEN AICS, Feb. 7, 2017



10

Testbed: Phase-Field Model

Phase-field model describing interface migration
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First-Order Adjoint of Phase-Field Model

Forward

Backward

H. Nagao @ RIKEN AICS, Feb. 7, 2017



12

Twin Experiment

 , t xSuppose that we have observation data of the phase             in 2D, which satisfies

Estimate the parameter m and initial state              from the observation data
contaminated by Gaussian noise, i.e., 

 ,0 x

+ noise that follows  2,N I0
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System Model & State Variable

System model

s.t.

State variable
M: number of computational 
grids in space

What we to do is to find                      
that best matches observation data

s.t.
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Bayes’ Theorem

constant

Posterior   ∝ Prior   × Likelihood

state data

a priori information misfit between 
model and data
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Prior
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Likelihood
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Optimization
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J

where   0 1i  
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is to be optimized by a gradient method,
but                 cannot be easily obtained
since  J  does not include        explicitly.
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Adjoint Method (4D-Var)

where
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Variable Transformation for Constraint Condition
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Procedure of Adjoint Method

Update by gradient method

1. Give an initial value

2. Compute          by an adjoint method

3. Transform        to       by

4. Update       by a gradient method

5. Transform inversely        to       by

6. Repeat 2.-5. until convergence

 



 
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Problem in Adjoint Method

The current framework of adjoint method 
never evaluates the uncertainty of estimates
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Uncertainty Quantification (UQ)

We have established a methodology 
of uncertainty quantification using 
second-order adjoint method

Ito, S., H. Nagao, A. Yamanaka, Y. Tsukada, T.

Koyama, M. Kano, and J. Inoue, Data assimilation

for massive autonomous systems based on a

second-order adjoint method, Phys. Rev. E, 94,

043307, doi:10.1103/PhysRevE.94.043307, 2016.

Enables us to estimate 
optimum and evaluate its 

uncertainty

Gives feedback to experimental design!

H. Nagao @ RIKEN AICS, Feb. 7, 2017
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Laplace Approximation of Posterior

Laplace approximation

Cost function can be approximated as a second-order 
polynomial in the neighborhood of the optimum

: inverse of the Hessian matrix

Direct computation of H-1 requires unpractical computation time O(N3).

But, what we need are only a limited number diagonal elements of H-1

H. Nagao @ RIKEN AICS, Feb. 7, 2017
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Second-Order Adjoint Method

input

output

Second-order adjoint method

We want to obtain only the k-th diagonal element in H-1 without explicitly computing H-1

H r bSolve                  using an iterative method, where  
T

0, ,0,1,0, ,0b =

Needs a method to compute Hessian-vector product H
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Procedure of UQ using Second-Order Adjoint Method

1. Estimate an optimum        minimizing  J based on the 
adjoint method and a gradient method (we adopt 
here limited-memory BFGS method)

2. Evaluate the uncertainty of        based on the second-
order adjoint method and a gradient method (we 
adopt here the conjugate residual method)   

Remarks:

1. An array having size O(N2) is not needed.
2. Optimum estimation and UQ can be achieved with O(K) computation 

(K: computation cost needed for a forward computation).

The proposed method is the only one that can estimate both optimum state 
and its uncertainty even with a system having large degrees of freedom

H. Nagao @ RIKEN AICS, Feb. 7, 2017
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Second-Order Adjoint of Phase-Field Model

Forward

Backward
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Setup of Twin Experiments

・・・

min 0.1T  max 102.4T 

True initial state
mtrue = 0.1

Can the proposed method correctly reproduce
the true parameter and true initial state from
synthetic data that are generated by using the
true parameter and initial state?

Synthetic observation data

Cost function Estimated m

Iteration # Iteration #

True phase field obtained with time interval
+

Gaussian noise                    20,N 

T

2 0.01,   0.1T   

Example of twin experiment
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Twin Experiment: Parameter Estimation

How estimate and its uncertainty depend on the time interval of data?
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Twin Experiment: Parameter Estimation

Estimation of parameter and 
its uncertainty depending on 
quality and quantity of data

Feedback to experimental design

H. Nagao @ RIKEN AICS, Feb. 7, 2017



30

Twin Experiment: Parameter & Initial State

parameter mCost function

true

small noise:
4= 1 10 

large noise: = 0.3
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Summary & Ongoing Works

Summary

1. We have established a DA methodology that enables us to estimate 

optimum state and parameters but also evaluate their uncertainties based 

on the second-order adjoint method, which is applicable to a system 

having large degrees of freedom.

2. Such UQ can give feedback to designs of observations/experiments.

Ongoing (?) works

1. Implement of a Monte-Carlo like method to exclude the dependency of an 

initial guess

2. Development of a formula manipulation method to derive the first-

/second-order derivatives of a given system model, i.e., 
2

2
,  

 

 

F F

 

H. Nagao @ RIKEN AICS, Feb. 7, 2017



32

References

• Ito, S., H. Nagao, A. Yamanaka, Y. Tsukada, T. Koyama, M. Kano, and J. Inoue,

Data assimilation for massive autonomous systems based on a second-order adjoint

method, Phys. Rev. E, 94, 043307, doi:10.1103/PhysRevE.94.043307, 2016.

• Kano, M., S. Miyazaki, Y. Ishikawa, Y. Hiyoshi, K. Ito, and K. Hirahara, Real data

assimilation for optimization of frictional parameters and prediction of afterslip in

the 2003 Tokachi-oki earthquake inferred from slip velocity by an adjoint method,

Geophys. J. Int., 203, 646-663, doi: 10.1093/gji/ggv289, 2015.

• Kobayashi, R., Modeling and numerical simulations of dendritic crystal growth,

Physica D, 63, 410-423, 1993.

• Le Dimet, F.-X., I. M. Navon, and D. N. Daescu, Second-order information in data

assimilation, Mon. Weather Rev., 130, 629-648, 2002.

• Maeda, T., K. Obara, M. Shinohara, T. Kanazawa, and K. Uehira, Successive

estimation of a tsunami wavefield without earthquake source data: A data

assimilation approach toward real-time tsunami forecasting, Geophys. Res. Lett.,

doi: 10.1002/2015GL065588, 2015.

H. Nagao @ RIKEN AICS, Feb. 7, 2017



33

References

• Shimokawabe, T., T. Aoki, T. Takaki, A. Yamanaka, A. Nukada, T. Endo, N.

Maruyama, and S. Matsuoka, Peta scale phase-field simulation for dendritic

solidification on the TSUBAME 2.0 Supercomputer, Proceedings of

Supercomputing 2011, 1-11, 2011.

• 伊理正夫,久保田光一,高速自動微分法(I),応用数理, 1(1), 17-35, 1991.

• 伊理正夫,久保田光一,高速自動微分法(I),応用数理, 1(2), 53-63, 1991.

• 樋口知之，上野玄太，中野慎也，中村和幸，吉田亮，データ同化入門，朝倉書
店，2011.

H. Nagao @ RIKEN AICS, Feb. 7, 2017


