
On the interaction of observation 
and a-priori error correlations in 

Variational data assimilation

Alison Fowler, Sarah Dance, Jo Waller

Data Assimilation Research Centre, University of Reading, UK.

RIKEN seminar, 7th March 2017 1



Motivation

• Background (a-priori) error correlations (BECs) known to be important in 
DA.

• Until recently observation error correlations (OECs) have been neglected 
in NWP. To account for this the data has either been thinned, ‘super-
obbed’ or the error variance have been inflated.
– Therefore, accounting for OECs correctly could allow for denser observations 

to be assimilated which could be important for high-resolution/high-impact 
weather forecasting.

• Accounting for inter-channel error correlations in IASI (which previously 
relied on variance inflation) have led to an improvement in the skill of the 
analysis and forecast (Weston et al., 2014, QJRMS, Bormann et al., 2016, 
QJRMS).

• This has motivated the OECs to be estimated for a range of other 
observations, for example using innovation ‘Desroziers’ diagnostics.

• Can we expect to see benefit to including OECs in all observation types? 
Are their cases when thinning the data is still desirable?
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Quick literature review

Effect of suboptimal R i.e not accounting for OECs
• Rainwater et al. 2015, QJRMS
• Miyoshi et al. 2013, Inverse Problems in Science and Engineering
• Stewart et al. 2008, International J. for Numerical Methods in Fluids 
• Stewart et al. 2013, Tellus A 
• Liu and Rabier 2002, QJRMS – also suboptimal H

In this talk I will be assuming that the correct B, R and H are known and 
used in the assimilation.

Impact of OECs on different scales
• Seaman 1977, MWR
• Rainwater et al. 2015, QJRMS
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Quick literature review
Impact of OECs on different scales

Positive error correlations

Taken from Waller et al. 2016, QJRMS
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(a) A microwave satellite image 
of Hurricane Sandy on 24 
October 2012, which is treated 
as truth. (b) Panel (a) plus white 
(uncorrelated) noise; (c) panel
(a) plus red (spatially correlated) 
noise.



Quick literature review

Impact of OECs in relation to the observation operator
• Miyoshi et al. 2013, Inverse Problems in Science and Engineering
• Terasaki and Miyoshi 2014, SOLA
• Liu and Rabier 2002, QJRMS

Optimal thinning when OECs present
• Liu and Rabier 2002, QJRMS
• Bergman and Bonner 1976, MWR

Few of these papers mentioned, look at how these aspects of the impact of 
OECs depend upon the background error statistics, beyond noting that there 
is a sensitivity.

Many have only studied the impact of OECs in terms of one metric, such as 
analysis rmse.
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Aim of this work

• To show how the impact of observations with 
correlated errors depends on the specification of the 
background error statistics (B) and the observation 
operator (H).

• Three different metrics studied

– The analysis error covariance

– The sensitivity of the analysis to the observations

– Mutual information
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Measure I: The analysis error 
covariance matrix

Recall the analysis, xa, in the case of Gaussian near-linear system is 
given by (using standard notation)

Where               is the background,             is the observation vector, K is 
the Kalman gain and h is the (near-linear) observation operator

The analysis error covariance matrix is

Where and  are the background and observation 
error covariance matrices

is the linearised observation operator
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• This quantifies the sensitivity of the analysis (in observation 
space) to the observations

• The diagonal elements are known as the self-sensitivities

• The off-diagonal elements are known as the cross-
sensitivities, measure the spread in information.

• dfs=trace(S) i.e. a sum of the self-sensitivities.

• The sensitivity matrix can be related to the analysis error 
covariance matrix:

Measure II: The sensitivity matrix
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• Mutual information measures the reduction in entropy due to 
the assimilation of observations

• Entropy (uncertainty) is defined as

• The entropy of a Gaussian distribution with covariance matrix 
is therefore

Measure III: Mutual information
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Illustration of the 95th percentile of the region of 
uncertainty given
by Gaussian distribution when the errors in x1 and 
x2 are uncorrelated (black)and correlated with a 
coefficient of 0.999 (red).

In the first case the entropy is 2.8379 and in the 
second case the entropy is 0.8794.



Measure III: Mutual information
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• Mutual information is the prior entropy minus the posterior 
entropy

• This can also be written in terms of the sensitivity matrix as

• Unlike dfs, MI is a function of both the self and cross 
sensitivities.



• In the following experiments, the background and observation error 
variances are defined as:

• The observation operator is given by:

• This setup results in circulant analysis error covariance and sensitivity 
matrices.

2 variable experimental design
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e.g. a=0.5 =>
y1=x1+0.5x2, y2=x2+0.5x1

(obs themselves are +vely corr in state space.)
a=-0.5 =>

y1=x1-0.5x2, y2=x2-0.5x1

(obs themselves are -vely corr in state space.)



Bayes’ illustration

RIKEN seminar, 7th March 2017 13

H=IH=I

β=ρ=1, γ=0.9



Analysis error covariance, β=2,ρ=1
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Analysis 
more 
accurate at 
small scales

---------------

Analysis 
more 
accurate at 
large scales

γ Background error correlations
Ψ Observation error correlations
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Analysis sensitivity, β=2,ρ=1
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Analysis at 
large scales 
more 
sensitive to 
observations
-----------------

Analysis at 
small scales 
more 
sensitive to 
observations

γ Background error correlations
Ψ Observation error correlations
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Mutual information, β=2,ρ=1
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Note: this looks very different to the pattern seen for the self-sensitivities => using dfs as a 
measure of information content would lead to different conclusions

γ Background error correlations
Ψ Observation error correlations



Data thinning

• It was suggested by Miyoshi et al. 2013, who noted the 
dependence of the observation impact on both the OECs and 
H, that this could be used in the design of instruments.

• However, in practice this may not be feasible as often the 
OECs and H are related.

• An easier way to exploit these results is in the choice of the 
density of the observations.

RIKEN seminar, 7th March 2017 17



Data thinning

• Results shown assume circular domain discretized into 32 
gridpoints.

• R and B are given by circulant matrices with correlations given by 
the SOAR function

• The background error correlation lengthscale is given by Lb=5. The 
observation error correlation lengthscale Lo is allowed to vary.

• The observation and background error variances are both set to 1.

• H assumes observations are made regularly and are a weighted 
combination of the state variables
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Data thinning
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LB=5

e.g. DRW obs

e.g. AMV obs



Data thinning

Key findings

• When the correlation lengthscales in the likelihood and prior are 
similar there is less benefit, in terms of the analysis error, in 
increasing the density of the observations compared to if the 
lengthscales are very different.

• If OECs are correctly included in the DA systems then denser 
observations are beneficial (in terms of MI/p) only if the 
lengthscales in R are much larger than B. 

• If the observations have overlapping weighting functions then this 
dominates the effect of the OECs.
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Conclusions

• The impact of observations with correlated errors cannot be considered in 
isolation of the background error correlations or the observation operator.

– This is particularly true if interested in the impact on analysis errors or 
the spread in information

• These results could be used in the design of new instruments and 
observing networks.

– For example for choosing the optimal density of the data, to provide 
the most efficient choice of observations

– In an LETKF this will change as the correlation lengthscales described 
by the ensemble evolve.

– These ideas should be investigated with an OSSE study.
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