Introduction	Performance of the SCALE–LETKF	Sensitivity to IC and BC	Sensitivity to filter parameters	Summary

Radar Data Assimilation in a Case of Deep Convection in Argentina

Paula Maldonado

Centro de Investigaciones del Mar y la Atmósfera (CIMA-CONICET/UBA) Departamento de Ciencias de la Atmósfera y los Océanos (DCAO-FCEN-UBA)

Supervisor: Takumi Honda

DA Seminar June 16th, 2017

Introduction

Performance of the SCALE–LETKF

Sensitivity to IC and BC

Sensitivity to filter parameters

Summary

High-impact Weather Events

P. Maldonado, T. Honda

CIMA-CONICET/UBA

000	000000	000	000	
Introduction	Performance of the SCALE–LETKF	Sensitivity to IC and BC	Sensitivity to filter parameters	

Convective-scale Forecasts

High-resolution NWP Models (< 4 km)

- Eliminate uncertainty associated with cumulus parameterization
- Significant errors in location and timing of convective systems

Remote Sensing Observations

 Describe the state of the atmosphere in the convective scale

Advantages of Using Radar Data

- High-resolution, 3D observations
- Temporal frequency necessary to retain the storm's structure

FIGURE – Weather radar network nowadays (blue line) and SINARAME radars (red line). Simple-pol (dash line) and dual-pol (solid line) radars.

Introduction ○○●	Performance of the SCALE–LETKF	Sensitivity to IC and BC	Sensitivity to filter parameters	Summary
Objectiv	es			

MAIN GOAL

Develop, implement and evaluate a **radar data assimilation system** based on the Local Ensemble Transform Kalman Filter (LETKF) to improve very short-term weather forecast of high-impact weather events in South America

Introduction	Performance of the SCALE–LETKF	Sensitivity to IC and BC	Sensitivity to filter parameters	
Objectiv	es			

MAIN GOAL

Develop, implement and evaluate a **radar data assimilation system** based on the Local Ensemble Transform Kalman Filter (LETKF) to improve very short-term weather forecast of high-impact weather events in South America

TALK'S GOALS

- Evaluate the performance of the SCALE-LETKF system using different assimilation strategies
- 2 Assess the sensitivity of the system to :
 - Initial and boundary conditions
 - Filter parameters

Introduction 000	Performance of the SCALE–LETKF ●00000	Sensitivity to IC and BC	Sensitivity to filter parameters	Summary
Radar C	Observations			

Radar Characteristics

- C-band, dual-pol, Doppler radar
- Resolution : 500 m (range), 1° (azimuth)
- Scanning mode :
 - 1 120 km scan : 10 min (Ref and DV)
 - 2 240 km scan : 10 min (Ref)

Case Study : Anguil, La Pampa (Argentina) - January 11th, 2010

Strong deep convective clouds including supercells were observed

FIGURE - Photographs taken by locals

Introduction	Performance of the SCALE–LETKF	Sensitivity to IC and BC	Sensitivity to filter parameters	Summary
	00000			

Quality Control and Superobbing

6/17

000 0	00000		
Experiment	al Design		

Model Domains

Ensemble size : 60

Assimilation Strategy Experiments

- 5min_3D : Assume whole volume is measured at same time
- **5min_4D** : Assimilation window with 1 min slots
- 1min_3D : Divide radar volume in 1 min files

Introduction	Performance of the SCALE–LETKF	Sensitivity to IC and BC	Sensitivity to filter parameters	Summary
Qualitat	ive Evaluation			

Analysis mean after 135 minutes at 1.3° elevation

Introduction	Performance of the SCALE–LETKF ○○○○●○	Sensitivity to IC and BC	Sensitivity to filter parameters	Summary
Quantita	tive Evaluation			

Analysis mean RMSE (solid) and BIAS (dot)

- RMSE increase between 60 min and 90 min
- Systematic error for both variables
- Small error difference between 5min_4D and 5min_3D
- Overall, assimilating the whole radar volume at one time (green line) seems to show the best results

Introduction	Performance of the SCALE–LETKF ○○○○○●	Sensitivity to IC and BC	Sensitivity to filter parameters	Summary
Doppler V	/elocity			

Analysis mean after 10 minutes at 0.5° elevation

- Poor representation of Doppler velocity in low levels near the radar site
- Synoptic-scale initial condition is not "good" enough

Introduction	Performance of the SCALE–LETKF	Sensitivity to IC and BC ●OO	Sensitivity to filter parameters	Summary
Experime	ental Design			

- 5min 3D D01 : IC and BC from D01
- 5min_3D_GFS : IC and BC from GFS analysis

Wind difference at 15Z at 1000 m

D01-GFS (shaded)

Introduction	Performance of the SCALE–LETKF	Sensitivity to IC and BC O●O	Sensitivity to filter parameters	Summary
Results				

Analysis mean RMSE (solid) and BIAS (dot)

- Similar errors in reflectivity
- Systematic errors are still present
- Fewer DV observations are rejected by LETKF quality control in 5min_3D_GFS than in 5min_3D_D01

000 000000 00 ● 000	000	000000	000	000	

Analysis mean after 10 minutes at 0.5° elevation

Analysis mean after 65 minutes at 1.3° elevation

P. Maldonado, T. Honda

CIMA-CONICET/UBA

DA Seminar

Introduction	Performance of the SCALE–LETKF	Sensitivity to IC and BC	Sensitivity to filter parameters ●○○	Summary
Experime	ntal Design			

Based on the 5min_3D_GFS experiment :

- Assimilation of clear-sky observations to eliminate spurious convection
 - Clear-sky observation : ref < 10 dBZ
 - Assimilation : XX number of members of the background ensemble have ref ≥ 10 dBZ
- 2 Covariance inflation to increase ensemble spread
 - Multiplicative inflation factor
 - Relaxation to prior spread (RTPS)

Filter Parameters Experiments

- Cntl (5min_3D_GFS) : RainMem = 10; Multiplicative inflation = 1.0; RTPS = 0.9
- RainMem05 : At least 5 members of the first guess ensemble must have rain
- RainMem01 : At least 1 members of the first guess ensemble must have rain
- Inflation : Multiplicative inflation = 1.1; RTPS = 0.95

Introduction	Performance of the SCALE–LETKF	Sensitivity to IC and BC	Sensitivity to filter parameters O●O	Summary
Results				

Analysis mean RMSE (solid) and BIAS (dot)

- Assimilation of a larger amount of clear-sky observations improves the reflectivity RMSE
- Increasing inflation has a clear impact on Doppler velocity

Introduction	Performance of the SCALE–LETKF	Sensitivity to IC and BC	Sensitivity to filter parameters	Summary
			000	

Short-term deterministic forecast

Introduction	Performance of the SCALE–LETKF 000000	Sensitivity to IC and BC	Sensitivity to filter parameters	Summary
Summary				

- Assimilation of radar observations using the SCALE–LETKF system has a positive impact on both, analysis mean and very short-term weather forecasts
- Initialization of the ensemble from the GFS analysis shows better results possibly because of the lack of conventional observations in the Southern Hemisphere
- Assimilation of clear-sky observations improves the reflectivity pattern by eliminating spurious convective zones
- Bigger ensemble spread helps reduce errors in the Doppler velocity field

Future Work

- Improve quality control of observations
- Test the assimilation system for other cases (i.e. for different types of convection organization)
- Assimilation of satellite observations to improve the mesoscale ensemble
- Assimilation of polarimetric variables

Introduction	Performance of the SCALE–LETKF 000000	Sensitivity to IC and BC	Sensitivity to filter parameters	Summary
Summary				

- Assimilation of radar observations using the SCALE–LETKF system has a positive impact on both, analysis mean and very short-term weather forecasts
- Initialization of the ensemble from the GFS analysis shows better results possibly because of the lack of conventional observations in the Southern Hemisphere
- Assimilation of clear-sky observations improves the reflectivity pattern by eliminating spurious convective zones
- Bigger ensemble spread helps reduce errors in the Doppler velocity field

Future Work

- Improve quality control of observations
- Test the assimilation system for other cases (i.e. for different types of convection organization)
- Assimilation of satellite observations to improve the mesoscale ensemble
- Assimilation of polarimetric variables

Thank you very much!