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Motivation: bias in weather and climate models

Weather and climate models have model biases from various sources

* Truncation error
* Approximation of unresolved physical processes
- Convection
- Small-scale topography
- Turbulence
- Cloud microphysics

(From JMA website)



Treatment of forecast error in data assimilation

Kalman filter

Update state and forecast error covariance
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Calculate Kalman gain
K = P’HT(HP'HT + R)
Calculate analysis state and error covariance
x% =x" + K(y — H(x)))
P% = (I — KH)P’

Model bias leads to
the underestimation of forecast(background) error
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Treatment of imperfect model

Insufficient model error degrades the performance of Kalman filter

1. Covariance inflation

additive inflation
P - P*+Q
multiplicative inflation
P% —» o P“
Relaxation-to-prior

P*—> (1—a)P%+ aP’/

2. Correction of systematic bias component
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Bias correction with simple functional form

v' “Offline” bias correction

d
d a L .
Ex = fmode1(x) + D(x) ac ferue(X) xt(t), x"(t + At) ...
7+ A = Jmode — x/(t + At
Set of training data {x, xf} 7; %X = fimod 1(x) x! ( )

—> bias correction term D(x) estimation 5x = xt(t + At) — x7(t + At)

Simplest form: linear dependency

D(x) =D, + Lx' x =xf -x
C : correlation matrix

D, = 8x/At Steady component

Lx' = CSx,x C;’}Cx’ / At Linearly-dependent component (Leith, 1978)

Dimensionality reduction can be applied
using Singular Value Decomposition (SVD) (Danforth et al. 2007)



Bias correction with nonlinear basis functions

Higher order polynomials :
* Coupled Lorenz96 system (Wilks et al. 2005, Arnold et al. 2013)

* Real case: All-sky satellite infrared brightness temperature (Otkin et al. 2018)
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(Fig.2 of Otkin et al. 2018)
* Coupled Lorenz96 system (Watson et al. 2019)



Online bias correction

v “Online” bias correction

= Simultaneous estimation of state variables and bias correction terms

 Kalman filter
sequential treatment / augmented state

- Steady component (Dee and Da Sliva 1998, Baek et al 2006)

- Polynomials (Pulido et al. 2018)

» \Variational data assimilation (“VarBC”)

- Legendre polynomials

(Cameron and Bell, 2016; for Satellite sounding in UK Met Office operational model)

bias-corrected obs error
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Localization

In high dimensional spatiotemporal system,
geographically (and temporally) local interaction is usually dominant

Localization is built-in in LETKF

v" Reduced matrix size -> low cost

v' Highly effective parallelization
(Miyoshi and Yamane, 2007)

Also used in simultaneous parameter estimation
(Aksoy et al. 2006)

Also in ML-based data driven modelling

(Pathak et al. 2018, Watson et al. 2019)
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(Pathak et al. 2018)



The goal of this study

v' ML-based online bias correction using RNN

v Combined with LETKF with similar localization

Test experiments with coupled Lorenz96 model
* Experimental Setup
* Online bias correction with simple linear regression as a reference

* (Online bias correction with RNN)



bias correction in LETKF system

forecast observation
f
T Xy Yt+1

Bias correction

’f{+1 = b(x{+1)
Model
Xep1 = M(x¢)
LETKF y
Analysis 1

Xip1 = 35{+1 + K (Yt+1 — H(’f{ﬂ))

Bias correction function b(x/) update




Lorenz96 model

Wind @ 250hPa=5_ .

d NCEP GFS i
a5k = X-1 (X1 = Xp—2) =X + F k=12, ..K Zf‘

(Lorenz 1996)
 1-D cyclic domain

* Chaotic behavior for sufficiently large F
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Coupled Lorenz96 model

Multi-scale interaction

“Nature run”

Large scale (Slow) variables kJ
d ( ) L F hc Z
— X = Xp_1(X — Xjp—n) — X - — ;
at "k k—1\Xk+1 k—2 k b Vi k=12 .. K
j=J(k—1)+1 B
Small scale (fast) variables y
hc
EY;’ = —cb }’j+1(3’j+2 - 3’j—1) —cy;+ ?xint[(j—l)/]]+1 j=12,..,K]

Forecast model (Danforth and Kalnay, 2008)

d

_ k
Exk = xk_l(xk+1 — xk_z) — X + F 4+ A sin (ZEE)

Parameters used in this study :
K =16,] =16
h=1,b=20,c =50
F=8A=1 (Wilks, 2005)




Example: simple linear regression

Online bias correction by linear regression

forecast observation
f _ t b
— Xiiq Yer1 = H(xghT) + €°°°
I
Bias correction
~F S S f
Model Xpp1 = WiiqXp T by
X1 = M(x;)
b.y1 = (1 —vy)b,
Wi =Q—-y)W, LETKF y
Analysis 1

Xty1 = 35{+1 + K(yt+1 - H(%{;l )
| bty = bl,, + BK (}’t+1 - H(§{+1))

2
t1= Wi, +BK (Yt+1 - H(%{+1)) DT |F




Online bias correction by linear regression

“Observation”

“Nature run” + random error

Observation operator : identical (obs = model grid)
Error standard deviation . 0.1

Interval: 0.05 (cf: doubling time = 0.2)

LETKF configuration

Member : 20
Localization :

Covariance inflation: multiplicative (factor: a)

p = 0.02,y = 0.001 (half-life: ~37)

Inflation | Min

factor RMSE
Without bias correction 2.6 0.099
With linear bias correction 1.9 0.072

RMSE

Gaussian weighting (length scale = 3 grids)
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Nonlinear basis functions

Linear regression using polynomials

p(x) = (1 x x? )T
= _wf f
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Nonlinear bias correction with ML

forecast observation
f
T Xy Yt+1

Bias correction

% . =bl,,.) RNN
Model
Xey1 = M(xp)
LETKF v
Analysis 1

Xip1 = 35{+1 + K (Yt+1 — H(’f{ﬂ))

Train the network b with {xfﬂ, x4}




Plan: LSTM/GRU implementation

Tensorflow LSTM/GRU is implemented and
integrated with LETKF codes

Network architecture

1 LSTM + 3 Dense layers

Activation:
tanh / sigmoid(recurrent)

No regularization / dropout

LETKF-like Localization
Input : localized area

Output : one grid point

Python
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Summary

e Systematic model bias degrades forecasts and analysis
e “Offline” bias correction can be performed by ML as nonlinear regression
* “Online” bias correction with data assimilation has been studied

using a fixed basis function set

* RNN-based bias correction is implemented and to be tested

* The efficiency of localization ?

* Online learning ?



