
Statistical Modeling and Machine Learning in Meteorology and Oceanography

Statistical Modeling and Machine Learning in Meteorology and
Oceanography

A geostatistical journey through data and model in air quality

Maxime Beauchamp 1

Institut Mines-Télécom Atlantique
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Scientific context
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Scientific context I

Implementation of mathematical models to describe the evolution processes of the
chemical species (pollutant) in the troposphere
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Scientific context II
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Data
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Statistical Modeling and Machine Learning in Meteorology and Oceanography

The PREV’Air system

PREV’AIR
Operational system for air quality monitoring and forecasting over Europe and France, under the aegis
of the Ministry in charge of the environment
I Partners : INERIS, Météo-France, CNRS, IPSL, LCSQA
I Set up in 2003 to deliver daily AQ forecasts and maps on France & Europe
I Based on deterministic chemistry-transport modelling and post-processing using in situ observation
data
I During pollution episodes, alert procedures are mainly triggered according to the forecast situation
for the previous day (D-1) and next days (D+0, D+1, D+2)

Screenshot of the PREVAIR website http://www2.prevair.org/
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Statistical Modeling and Machine Learning in Meteorology and Oceanography

The analysis problem

Two products are delivered by the PREV’AIR system :

I) Analysis (Estimation problem)

Map of the previous day (D-1)
1) Meteorology, Emissions and Boundary conditions are used to run a simulation
2) Monitoring data are collected (France + Europe)
3) Combination of model and data
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(a) CHIMERE simulation
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(b) Analysis (Kriging with
external dri�)

CHIMERE daily simulation and analysis (11th of March 2014)
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Statistical Modeling and Machine Learning in Meteorology and Oceanography

The analysis problem

◾ Concerning the analysis problem, in-situ monitoring observations are generally collected at
fixed stations.

◾ As a consequence, a spatial estimation is su�icient for solving the interpolation

◾ Di�erent solutions : …
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Statistical Modeling and Machine Learning in Meteorology and Oceanography

The analysis problem

OI (spatial)

Let note xk ∈ Rm the locations to interpolate the observations yk ∈ Rp , thus the optimal interpolation
(OI) x∗k is given by :

x∗k = ΣxyΣ
−1
yy yk

with the error covariance matrix :

Pk = Σxx −ΣxyΣ
−1
yyΣyx

where :
Σxy = Cov{xk , yk} ∈ Rm×p

Σyy = Cov{yk , yk} ∈ Rp×p
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The analysis problem

OI with covariates / Residual kriging

In the kriging with external dri� model (Chiles and Delfiner, 2012), the relation between the covariates
ϕl (the model here) and the observations x is assumed to be linear. At a specific location s

xs =
∑

l

βlϕl(s) + R(s)
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Statistical Modeling and Machine Learning in Meteorology and Oceanography

The analysis problem

Kriging with external dri�

Let note yα = y(sα), α = 1, · · · , p. At a particular location s0 in space, x∗0 =
∑

α λαyα and the
weights λα are solution of the linear system (Chiles and Delfiner, 2012) :

n∑
α=1

λαC(sα − sβ) + µ0 +

p∑
i=1

µiϕi(sβ) = C(sβ − s0) ∀β

n∑
α=1

λα = 1

n∑
α=1

λαϕi(sα) = ϕi(s0) ∀i

βl(s), i = 0, · · · , l unknown and adjusted within a local neighbourhood
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Statistical Modeling and Machine Learning in Meteorology and Oceanography

The analysis problem

xs =
∑

l

βl(s)φl(s) + R(s)

◾ Fully bayesian configuration : not only R(s) is stochastic but also the coe�icients βl(x).

◾ Be�er handling of localisation issues in kriging

Classic Residual vs Bayesian-based residual kriging

Maxime Beauchamp Statistical Modeling and Machine Learning in Meteorology and Oceanography 2020, February 10th 10



Statistical Modeling and Machine Learning in Meteorology and Oceanography

The analysis problem

In the DA literature, kriging is o�en presented as a synonym of OI. It is true… but it is also more than
that : kriging is a generic term that englobes :

◾ Optimal interpolation of linear and gaussian quantities

◾ Optimal estimation of non-linear quantities (Disjunctive kriging, etc.)

◾ Optimal interpolation of non-gaussian quantities (Poisson, anamorphosis)

◾ Up/Downscaling of the initial state space considering covariates and support
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Statistical Modeling and Machine Learning in Meteorology and Oceanography

The analysis problem

BLUE (spatial)

In a gaussian context with linear observation operator H , the BLUE is defined by :

x∗k =
(
HT

kR
−1
k Hk + B−1)−1 (HT

kR
−1
k yk + B−1µk

)
= µk + Kk (yk −Hkµk)

Pk =
(
HT

kR
−1
k Hk + B−1)−1

= Σx|y = (I− KkHk)B

where the gain matrix Kk (at time tk ) is defined by :

Kk = BkHT
k

(
Rk + HkBHT

k

)−1

◾ µk is the expected mean of xk

◾ B = E[ukuT
k ] is the model error (uk ) covariance matrix

◾ Rk = E[vkvT
k ] is the observation error (vk ) covariance matrix.

Here, B is not indexed by k because in a classical OI scheme, it is usually constant and takenb from
an historical run.
What is called BLUE in the DA community is also know as multivariate kriging or cokriging in a
geostatistical setup
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Statistical Modeling and Machine Learning in Meteorology and Oceanography

The prediction problem

II) Forecast (Prediction problem)

Forecast maps of the days D+0, D+1, D+2
1) Meteorology, Emissions and Boundary conditions are used to run a CHIMERE simulation
2) Data from the past
3) Combine model and past data
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(a) CHIMERE simulation
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The prediction problem

The prediction problem is usually solved by DA techniques (see e.g. Asch et al., 2016)

In AQ, impact(emissions) > impact(initial conditions), thus space-time estimation techniques, i.e. :

◾ parameter estimation of the deterministic component

◾ space-time propagation of the stochastic component

are very competitive (MACC project, 2015)

First Idea
Mimic the spatial analysis :

◾ Because we are dealing with static in-situ observations, provide a statistical model to predict yk+1

from y1:k and covariates (LGM, GAM, NN, etc.)

◾ Spatial OI of the statistical forecasts obtained by these in-situ-specific forecasting models

Good to introduce spatial non-stationarity (individual in-situ models) but probably missing
space-time correlations.
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Methods

Covariance-based kriging

Space-time residual kriging

xk = µk + Rk =
∑

βkϕk,l + Rk

Two options :

◾ Covariance-based kriging : a simple extension of the spatial kriging, with appropriate space-time
covariances

◾ SPDE-based kriging : a new framework introduced by Lindgren et al. (2011)
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Methods

Covariance-based kriging

Covariance-based kriging

In the tradition framework, a space-time authorized covariance model is given, (see e.g. Gneiting
et al., 2007; Porcu et al., 2006; De Iaco et al., 2001)

Examples of space-time covariance

◾ Major drawbacks : full rank matrices and issues with highly dimensional dataset

◾ The space-time covariance is generally isotropic in space and symmetric in time
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Methods

SPDE-based kriging

SPDE-based kriging I

The SPDE (spatial) approach is a new formalism which makes it possible to achieve both estimates
and simulations. It is constrained by the use of a Matèrn covariance model (which is very general)

C(h) = σ2 21−ν

Γ(ν)

(√
2ν

h
a

)ν
Kν
(√

2ν
h
a

)

where :

◾ Kν is the 2nd order modified Bessel function

◾ ν is the covariance regularity parameter.

Let note that :

◾ for ν = 1/2, the Matèrn covariance becomes exponential

◾ ν → +∞, the Matèrn covariance becomes gaussian
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Methods

SPDE-based kriging

According to Whi�le (1954), if the process xs, s ∈ Ω is a Gaussian random field (GRF) with Matèrn
covariance, then it is solution of the stochastic SPDE :

(κ2 −∆)α/2τx(s) =W(s)

with :

◾ ∆ =
d∑

i=1

∂2

∂s2
i

the Laplacian operator

◾ W(s) a standard gaussian white noise

◾ κ = 1/a

◾ α = ν + d/2

◾ τ = σΓ(ν+d/2)1/2(4π)d/4κν

Γ(ν)1/2
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Methods

SPDE-based kriging

Results I

On a 2D regular grid, discretizing the SPDE by a FD scheme gives (for α = 2) :

κ2xi,j −
1

dx

(
xi+1,j − xi,j

dx
−

xi,j − xi−1,j

dx

)
− 1

dy

(
xi,j+1 − xi,j

dy
−

xi,j − xi,j−1

dy

)
= τWi,j

which can be rewri�en as a sparse linear system :

Ax = W

By denoting Σ = Cov(x) :

AΣAt = τ 2I

The précision matrix Q = Σ−1 is then symmetric and sparse :

Q = Σ−1 =
1
τ 2 ATA
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Methods

SPDE-based kriging

A bridge to kriging I

Let note

Z =

(
y
x

)

The covariance matrix of Z is :

Cov(Z) = Σ =

(
ΣYY ΣYX

ΣXY ΣXX

)

Thus, the kriging and its error covariance matrix are given by :

x? = ΣXYΣ
−1
YYy

Cov(x? − x) = ΣXX − ΣXY Σ−1
YY ΣYX
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Methods

SPDE-based kriging

A bridge to kriging II

Regarding the precision matrix :

Q = Σ−1 =

(
QYY QYX

QXY QXX

)

And the kriging can also be wri�en as :

x? = −Q−1
XX QXYy

Cov(x? − x) = Q−1
XX

Concerning the complexity of the linear systems :

◾ In traditional geostatistics, we solve a system involving ΣYY which has the size of the data set

◾ In the SPDE approach, we solve a system involving QXX which has the size of the number of
target points (state space). However, ΣYY is dense while QXX is sparse (algorithms adapted to
sparse matrices of complexity O(n3/2), while a general Cholesky is of O(n3).
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Methods

SPDE-based kriging

Cas des données irrégulières I

If irregular data y, the finite di�erence method can no longer be used : use of Finite element method
(FEM).
An intermediate stage of triangulation of the domain is then required where data and target points
must be located on the vertices of the triangulation.

◾ The random function x is then approached by :

x(s) =
K∑

k=1

λkψk(s)

where ψk = 1 at vertex k and linearly decreases to 0 towars neighbouring vertices.

FEM approximation

◾ The λk are random and known at observations locations y
◾ The precision matrix of Λ is sparse and depends of the triangulation
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Methods

SPDE-based kriging

SPDE perspectives I

For now, the isotropic spatial case was introduces :

(κ2 −∆)
α
2 x(s) = τW(s)

isotropic SPDE-based GRF on the sphere
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Methods

SPDE-based kriging

SPDE perspectives II

A global anisotropy can be added through the SPDE :

(κ2 −∇ ·H∇)
α
2 x(s) = τW(s)

and even be�er, local anisotropies :

(κ2(s)−∇ ·H(s)∇)
α
2 x(s) = τ(s)W(s)
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Methods

SPDE-based kriging

The complete framework is to estimate space-time processes, non stationary in space and time, with
non symmetric and non separable space-time covariances :

{
∂

∂t
+ (κ2(s) + m ·∇−∇ ·H(s)∇)

}
x(s, t) =W(s, t)

where m is a vector for advection and H a di�usion tensor.

anisotropic space-time SPDE-based GRF on the sphere
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Methods

Applications to AQ data

Application to AQ data I

Model (Camele�i et al., 2012) :

x(s, t) = β0 +
∑

βlϕl(s, t)

local mean

+ ξ(s, t)

latent field

+ ε(s, t)

obs error

ε(s, t) ∼ N (0, σ2
ε) and the latent field is an AR1 process :

ξ(s, t) = aξ(s, t − 1) + ω(s, t)

ω(s, t) ∼ N (0, σ2
ωC(h)), C(h) a Mátern (spatial) covariance.
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Methods

Applications to AQ data

Application to AQ data II

A separable space-time covariance is built by approximating the Gaussian field by its Finite Elements
representation :

ξ(s, t) =
∑

k

ψl(s, t)ωk =
∑

k

ψs
i (s)ψt

j (t)ωk

where the basis functions are seen as the product of purely spatial basis functions ψs
i (s) and purely

temporal basis functions ψt
j (t), then the space-time stochastic PDE (Lindgren et al., 2011) defined by :{

∂

∂t
+ (κ(s)2 −∆)α/2τ(s)

}
ξ(s, t)) =W(s, t), (s, t) ∈ D × R

generates a precision matrix Q for the Gaussian weights ωk so that :

Q = QT ⊗QS

QS and QT are respectively the precision matrices of the purely spatial model and the Markovian
random walk.
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Scores

RMSE
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Daily PM10 RMSE (French domain) in 2014 for CHIMERE, time+spatial kriging, covariance-based space-time
kriging and SPDE-based space-time kriging
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Perspectives

Perspectives : Urban scale

◾ Two scales in AQ : regional/global scale and urban scale

◾ Urban scale aims at integrating high-resolution emissions (tra�ic-related, etc.)

◾ Historically : Few data (less than 10 monitoring sites over the city) or more but with a low temporal
resolution (annual mean)

◾ In the last two years, new framework with mobile sensors : cheap and numerous

◾ But large and correlated errors (R), provide e�icient way to deal with partial and noisy observa-
tions
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Perspectives

Perspectives : Large scale

Learning from the past

◾ AnDA provides an interesting framework to avoid running costly CTMs : biogenic and anthropic
emissions have clear seasonality that can be used in an analog perspective

Need for metamodeling : sensitivy of CTMs to emission for AQ/climate change scenarii

◾ SPDE-based simulations, coupled with parameter estimation (Rue et al., 2009)
Cholesky factorizationQ = ŁŁT then solving triangular system ŁTZ = Uwith a standard gaussian
random vector U with independant components

◾ Deep-learning NN to learn AQ dynamics conditionnaly to meteorology and emissions
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