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DATA ASSIMILATION

Reality
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Data flow 
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?
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4

Data-Model Coupling



2

DATA ASSIMILATION

Reality

Observations

Software

Ø SimulaFon of the dynamic
of the reality

Ø CorrecFon by the data flow

from CERFACS
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DATA ASSIMILATION
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• Parameterized PDEs, ODEs … 
• Database

from CERFACS
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Other definiKon of Data AssimilaKon :

x(t) = M[x(t-1)] + η(t)                          η(t) ∼ N(0, Q(t)) 
⎨ y(t) = H[x(t)] + ε(t)                               ε(t) ∼ N(0, R(t)) 

• t the discrete Kme                                                        
• x the real state

• y the associated observaKon

• M the model
• H the observaKon operator

• η the model uncertainty
• ε the observaKon error
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SST-Data Assimila1on

Ø SST plays a significant role in analyzing and assessing the dynamics of 
weather and other biological systems.  

Ø Various applications : weather forecasting, or planning of coastal 
activities. 

Ø Weather satellites make huge quantities of very high resolution SST 
data available. 
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• Standard physical methods for forecasKng SST use coupled ocean-
atmosphere predicKon systems, based on the Navier-Stokes 
equaFons. These models rely on mulKple physical hypotheses and do 
not opKmally exploit the informaKon available in the data. 

• Despite the availability of large amounts of data, direct applicaKons of 
machine learning methods do not lead to compeKKve state of the art 
results. 
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The model of Flourent et al.

Ø H. Flourent, E. Frénod & V. Sincholle (2019). An InnovaKng StaKsKcal
Learning Tool Based on ParKal DifferenKal EquaKons, Intending
Livestock Data AssimilaKon.

Ø Model for biological variables with convecFon-diffusion phenomena.

Ø Data-model coupling approach : Model based on PDEs and ODEs
with parameters learnt by data.
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The model of Flourent et al.

AVATARREALITY MODEL
PDEs, ODEs, …

linked to model 
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The model of Flourent et al.

Forward flow
Backward flow

DelayVelocity field

Avatar from H.Flourent et al.
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The model of Flourent et al.
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The model of Flourent et al.
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Learning of the parameters for the model of Flourent et al.

MinimisaKon at each Kme t of the objecKve funcKon, using the DIRECT 
algorithm on R:

Here t=1, is the size of the training dataset, is the observed
value, and the predicted value.
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Our modified model

Goal: simulate and predict the SST

Ø Advection-diffusion phenomena

Ø Use of SST database

Ø Use of solar radiation (at the top of 
the atmosphere) database
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Localisa;on of the dataset, from E. de Bézenac et al.
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Our modified model

SST-Data Assimilation

Model

INPUTS OUTPUTS

SST database
(from NEMO)

SST 
predictions

Solar radiation 
database (from

the CERES)



Our modified model
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Output

Our modified model

SST-Data Assimila1on

Advection velocity

Diffusion coefficient

Source term (solar radiaKon)

Flow

Hidden variables



Our modified model

Ø We have to determine u, inf and supp.

Ø To that, we use the same learning tool as the previous model, 
using the available data.
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Numerical results

22

Solar radiaKon simulated by a spline

(W
.m

-2
)
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Numerical results
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Real SST for different years
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Numerical results
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Learning of the parameters for each year

Ø That indicates the stability of the parameters
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Numerical results
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Our modified model (in blue) compared to real SST of year 1 (in black)
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Ø Same seasonal trend
Ø No high frequency variaKons in our model



Numerical results
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2D-extension of the model :

Simulation of the advection-diffusion phenomena, using a Finite Element Method on Freefem++
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Grid IniKal condiKon Result



Numerical results
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Which modeling soXware ?

Fast
Easy to use
Hard to interface with structured data
Hard to interface with higher level 
language (e.g Python)

Python compatible
Easy interfacing with structured data
Wide variety of tutorials
Slower
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Conclusion
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• We adapted a biological model to simulate SST, with the same 
underlying phenomena, using the available data.

• Some difficulties to well simulate the diffusion phenomenon 
with Freefem++.

To go on with our model:

Ø Simulating the advection-diffusion phenomena using Galerkin 
discontinuous functions on Fenics.

Ø Using a Neural Network instead of the learning tool of the model of 
Flourent et al.
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Thank you for your arenKon !
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