Data-Model Coupling for SST-DA

Workshop

Statistical Modeling and Machine Learning in Meteorology and Oceanography

Brest, february 10-11, 2020

Jules Guillot, LMBA-UBS

Data-Model Coupling for SST-DA

LABORATORIA CONTRACTORIA CONTRACTICA CONTRACTORIA CONTRAC

IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom

PADOCARI project:

PArtial Differential equations for OCeanic ARtificial Intelligence

Supervised by:

- Emmanuel FRENOD
- Hélène FLOURENT
- Julien BRAJARD
- Frédérique CHARLES

Participants:

- Jules GUILLOT
- Guillaume KOENIG
- Hadi MINBASHIAN

Outline

- Data-Model Coupling
- SST-Data Assimilation
- Numerical results
- Conclusion
- References

- Parameterized PDEs, ODEs ...
- Database

from CERFACS

Other definition of Data Assimilation :

 $\begin{cases} x(t) = M[x(t-1)] + \eta(t) \\ y(t) = H[x(t)] + \varepsilon(t) \end{cases}$

 $\eta(t) \sim N(0, Q(t))$ $\varepsilon(t) \sim N(0, R(t))$

- t the discrete time
- **x** the real state
- **y** the associated observation
- **M** the model
- **H** the observation operator
- **n** the model uncertainty
- **ɛ** the observation error

- SST plays a significant role in analyzing and assessing the dynamics of weather and other biological systems.
- Various applications : weather forecasting, or planning of coastal activities.
- Weather satellites make huge quantities of very high resolution SST data available.

- Standard physical methods for forecasting SST use coupled oceanatmosphere prediction systems, based on the Navier-Stokes equations. These models rely on multiple physical hypotheses and do not optimally exploit the information available in the data.
- Despite the availability of large amounts of data, direct applications of **machine learning** methods do not lead to competitive state of the art results.

The model of Flourent et al.

H. Flourent, E. Frénod & V. Sincholle (2019). An Innovating Statistical Learning Tool Based on Partial Differential Equations, Intending Livestock Data Assimilation.

> Model for biological variables with **convection-diffusion phenomena**.

Data-model coupling approach : Model based on PDEs and ODEs with parameters learnt by data.

The model of Flourent et al.

The model of Flourent et al.

Avatar from H.Flourent et al.

The model of Flourent et al.

$$\frac{\partial \{\Phi_{f}(\mathbf{d})\}}{\partial t}(t,x) + \omega_{\mathbf{d}}(x)\frac{\partial \{\Phi_{f}(\mathbf{d})\}}{\partial x}(t,x) - c_{\mathbf{d}}\frac{\partial \left[\chi \frac{\partial \left[\{\Phi_{f}(\mathbf{d})\}\right]}{\partial x}\right]}{\partial x}(t,x) = \{Q(\mathbf{d})\}(t,x) - f_{\mathbf{d}}\{F(\mathbf{d})\}(x)\{\Phi_{f}(\mathbf{d})\}(t,x), \quad (1)$$

$$\frac{\partial \{\Psi(\mathbf{d})\}}{\partial t}(t,x) = f_{\mathbf{d}}\{F(\mathbf{d})\}(x)\{\Phi_b(\mathbf{d})\}(t,x) - u_{\mathbf{d}}\{\Psi(\mathbf{d})\}(t,x),\tag{2}$$

$$\frac{\partial \{\Xi(\mathbf{d})\}}{\partial t}(t,x) = u_{\mathbf{d}}\{\Psi(\mathbf{d})\}(t,x) \left(\frac{L_{\mathbf{d}} - \{s(\mathbf{d})\}(t)}{L_{\mathbf{d}}}\right).$$
(3)

$$\{s(\mathbf{d})\}(t) = \int_{\Omega(\mathbf{d})} \{\Xi(\mathbf{d})\}(t, x) \, dx,\tag{4}$$

Data-Model Coupling for SST-DA

The model of Flourent et al.

$$\frac{\partial \{\Phi_{f}(\mathbf{d})\}}{\partial t}(t,x) + \mathbf{\omega}_{\mathbf{d}}(x) \frac{\partial \{\Phi_{f}(\mathbf{d})\}}{\partial x}(t,x) - \mathbf{c}_{\mathbf{d}} \frac{\partial \left[\left\{\Phi_{f}(\mathbf{d})\right\}\right]}{\partial x}(t,x)}{\partial x}(t,x) = \{Q(\mathbf{d})\}(t,x) - f_{\mathbf{d}}\{F(\mathbf{d})\}(x)\{\Phi_{f}(\mathbf{d})\}(t,x), \quad (1)$$

$$\frac{\partial \{\Psi(\mathbf{d})\}}{\partial t}(t,x) = f_{\mathbf{d}}F(\mathbf{d})\{(x) \{\Phi_b(\mathbf{d})\}(t,x) - u_{\mathbf{d}}\{\Psi(\mathbf{d})\}(t,x),$$
(2)

$$\frac{\partial \{\Xi(\mathbf{d})\}}{\partial t}(t,x) = \mathcal{U}_{\mathbf{d}}\{\Psi(\mathbf{d})\}(t,x) \left(\frac{L_{\mathbf{d}} - \{s(\mathbf{d})\}(t)}{L_{\mathbf{d}}}\right).$$
(3)

$$\{s(\mathbf{d})\}(t) = \int_{\Omega(\mathbf{d})} \{\Xi(\mathbf{d})\}(t, x) \, dx,\tag{4}$$

Data-Model Coupling for SST-DA

Learning of the parameters for the model of Flourent et al.

Minimisation at each time t of the objective function, using the DIRECT algorithm on R:

$$f_{obj}(\omega_{d}, r_{d}, f_{d}, u_{d}, L_{d}) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{(s_{i_{obs}}(1) - s_{j_{pred}}(1))}{s_{i_{obs}}(1)} \right)^{2}$$

Here t=1, n is the size of the training dataset, $s_{i_{obs}}$ is the observed value, and $s_{j_{pred}}$ the predicted value.

Our modified model

Goal: simulate and predict the SST

Advection-diffusion phenomena

Use of SST database

Use of solar radiation (at the top of the atmosphere) database

Localisation of the dataset, from E. de Bézenac et al.

Our modified model

Our modified model

$$\frac{\partial \Phi_f}{\partial t}(t,x) + \omega \frac{\partial \Phi_f}{\partial x}(t,x) - c \frac{\partial \left[\chi \frac{\partial \Phi_f}{\partial x}\right]}{\partial x}(t,x) = Q(t,x) - fF(x)\Phi_f(t,x)$$
(1)

$$\frac{\partial\Psi}{\partial t}(t,x) = fF(x)(t,x) - u\Psi(t,x)$$
(2)

$$\frac{\partial \Xi}{\partial t}(t,x) = -u\Psi(t,x) \Big(\Xi(t,x) - sup\Big) - P\Big(\Xi(t,x) - inf\Big)$$
(3)

$$s(t) = \int_{\Omega} \Xi(t, x) \, dx \tag{4}$$

Our modified model

> We have to determine **u**, **inf** and **supp**.

To that, we use the same learning tool as the previous model, using the available data.

Solar radiation simulated by a spline

months

Real SST for different years

Learning of the parameters for each year

Year	sup	inf	u	obj func
1	56.6872427983148	0.5037952	199.999999999961	0.0488598607471862
2	68.4254272816738	0.4976314	199.999993030828	0.0461400247339915
3	51.7736625511663	0.5224552	199.999999999882	0.0579528378552093
4	62.5269300303108	0.4888889	199.9999999999908	0.0554632691635029
5	68.8096166836958	0.444428	199.999811832358	0.0640272984624972
6	52.5925925925795	0.5375095	199.9999999999961	0.0575910849643628
7	54.1394604472804	0.5199167	199.999999999961	0.0733631601644184

> That indicates the stability of the parameters

Our modified model (in blue) compared to real SST of year 1 (in black)

- Same seasonal trend
- > No high frequency variations in our model

2D-extension of the model :

Simulation of the advection-diffusion phenomena, using a Finite Element Method on Freefem++

Which modeling software ?

- ✓ Fast
- ✓ Easy to use
- X Hard to interface with structured data
- X Hard to interface with higher level language (e.g Python)

Python compatible
 Easy interfacing with structured data
 Wide variety of tutorials
 Slower

Conclusion

- We adapted a biological model to simulate SST, with the same underlying phenomena, using the available data.
- Some difficulties to well simulate the diffusion phenomenon with Freefem++.

To go on with our model:

- Simulating the advection-diffusion phenomena using Galerkin discontinuous functions on Fenics.
- Using a Neural Network instead of the learning tool of the model of Flourent et al.

References

- L. Bertino, M. Bocquet, J. Brajard, A. Carrassi (2019). Data assimilation as a learning tool to infer ordinary differential equation representations of dynamical models.
- E. de Bézenac, P. Gallinari, A. Pajot (2018). Deep Learning for Physical Processes: Incorporating Prior Scientific Knowledge.
- **S. Brunton, J. Kutz, J. Proctor** (2016). Discovering governing equations from data by sparse identification of nonlinear dynamical systems.

References

- H. Flourent, E. Frénod, V. Sincholle (2019). An Innovating Statistical Learning Tool Based on Partial Differential Equations, Intending Livestock Data Assimilation.
- **G. Lin, S. Zhang** (2018). Robust data-driven discovery of governing physical laws with error bars.
- R. Monson, W. Sacks, D. Schimel (2006). Coupling between carbon cycling and climate in a high-elevation, subalpine forest: a model-data fusion analysis.

Thank you for your attention !