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✔ The Japan’s Big Data Assimilation (BDA) Project
JST CREST,   2013-2019,   Leader : Dr. Miyoshi (RIKEN, R-CCS) 

✔ AIP (Advanced Intelligence Project) Acceleration Research, 2019-2022,
Integration of DA and AI with high-performance computation (HPC). 

JST: Japan Science and Technology Agency

CREST: Core Research for Evolutional Science and Technology

Funding program for team-oriented research with the aim of achieving 
the strategic goals set forth by the government

Research Project
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National Research Institute Earth Science 
and Disaster Resilience

Disaster Resilience Science Team

Japan Meteorological Agency

Research collaboration with

Our challenge is to develop novel AI approaches to 
accelerate disaster prevention research.

Earthquake Research Institute, University of Tokyo

Researcher & PostDoc: 4
Visiting Researcher: ５
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Research Topics

1. Earthquake damage evaluation

2. Earthquake occurrence forecasting

3. Landslide susceptibility mapping

- Evaluate how much damage will occur by a megaquake

- Reproduce the Nankai Trough historical sequence 

- Create a map for the potential for landslide

4. Weather forecasting

- Develop “Integrated Guidance” to optimally combine 
multiple numerical forecast results

2019.10~



✔ Forecasting Rapidly Developing Typhoon
Kurora, Hachiya, Shimada, and Ueda

Japan Meteorological Society 2019

✔ Integrated Guidance

Today’s Topics

Collaboration with Japan Meteorological Agency
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✔ Forecasting Rapidly Developing Typhoon 

✔ Integrated Guidance

Research Topics

Collaboration with JMA
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Background
• Severe damage by rapidly developing typhoons

• Accurate forecasting of rapidly development is required

• However, # of rapidly developing typhoons is very limited

damage in Japan by Jebi, 2018
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• Predicting the central pressure change 𝑦𝑡
𝑖 from 

environmental features 𝒙𝑡
𝑖 generated from models

• Linear regression model is used in SHIPS

Related works: SHIPS
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SHIPS: Statistical Hurricane Intensity Prediction 
System

𝒘 = 𝑤1, 𝑤2, ⋯𝑤24ො𝑦𝑡
𝑖 = 𝑓 𝒙𝑡

𝑖 = 𝒙𝑡
𝑖𝒘

𝑦𝑡
𝑖 = 𝑝𝑡+∆𝑡

𝑖 − 𝑝𝑡
𝑖



Catalog data (SHIPS)

• Environmental conditions
• Sea temperature, wind strength over sky etc.

• Time-series data from birth to death of a typhoon

Extracting features for every 6 hours sliding window 
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Problem of SHIPS
• Linear regression tends to influenced by the majority of data 

and it is difficult to predict rapid intensification 
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• We define rapid intensification forecasting as binary 
classification task

Intensification forecast as classification task
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Time h

𝑝𝑡
𝑖

𝑡 𝑡 + ∆𝑡

𝑝𝑡+∆𝑡
𝑖

Pressure hpa

Observation

𝑦𝒕
𝒊 = ൝

1 𝑝𝑡+∆𝑡
𝑖 − 𝑝𝑡

𝑖 < 𝜏

0 𝑝𝑡+∆𝑡
𝑖 − 𝑝𝑡

𝑖 ≥ 𝜏

𝜏:threshold of central pressure change

𝑦𝒕
𝒊 = 0: normal typhoon

𝑦𝒕
𝒊 = 1: rapidly developing typhoon



• Calculate the amount of change in the central pressure between 
the forecast time and the initial time for each window

Ex: the forecast time is 48 hours after the initial time

・95% point of the result of sorting the central pressure 
change in descending order is set as threshold 𝜏
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Central 
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time 𝑦𝑡1
𝑖

𝑦𝑡2
𝑖
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998 – 1006 = −8

990 – 1006 = −16

95% 5%
Positively larger change Negatively larger change
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Usual Binary Classification Scheme
• Binary (rapid or normal) classification formulation

Cross-Entropy loss function
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The loss CE decreases as the predicted value approaches the true value

𝑝𝑡
𝑖

𝑡 𝑡 + ∆𝑡

𝑝𝑡+∆𝑡
𝑖

時間

pressure

𝑦𝑡
𝑖 = 𝑝𝑡+∆𝑡

𝑖 − 𝑝𝑡
𝑖

the ith typhoon’s pressure 
change 𝑦𝒕

𝒊 = ൝
1 𝑦𝒕

𝒊 < 𝜏

0 𝑦𝒕
𝒊 ≥ 𝜏

1 ： rapid
0 : normal

CE = ෍

𝑘=1

𝑁

−𝑦𝑘 log ො𝑦𝑘 − 1 − 𝑦𝑘 log(1 − ො𝑦𝑘) 𝑦𝑘 ∶ true
ො𝑦𝑘 : prediction

Cross-entropy minimization cannot handle imbalances between rapidly 
developing (small) and normal (many) data



16

• In binary classification tasks, accuracy is the most commonly used as a 
measure of classifier performance.

• In some applications such as anomaly detection and diagnostic testing, 
accuracy is not an appropriate measure since prior probabilities are often 
greatly biased. 

• Although in such cases, the AUC has been utilized as a performance 
measure, few methods have been proposed for directly  maximizing the AUC.

• The conventional approach utilizes a linear function as the scoring function. 

• In contrast, we newly introduce nonlinear scoring functions for this purpose.

Direct AUC maximization using neural network
Ueda & Fujino, 2018
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ROC (Receiver Operating Characteristic)

Binary classification (positive or negative) 
should be evaluated by ROC-AUC
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FPR

f
(t) = Pr{ f (x- ) > t} 

  
TPR

f
(t) = Pr{ f (x+ ) > t} 

AUC (Area Under the ROC Curve)

Scoring function: f: x -> R 

AUC is the probability of 
𝑓 𝑥+ being larger than 𝑓 𝑥−

AUC = Prob 𝑓 𝒙+ > 𝑓 𝒙−



Direct AUC maximization using neural network

• AUC is the probability of 𝑓 𝑥+ being larger than 𝑓 𝑥−

• We maximize smoothed version of AUC

• We design function 𝑓 𝒙 with fully connected neural network 
19

AUC = Prob 𝑓 𝒙+ > 𝑓 𝒙− ≈
1

𝑛+𝑛−
෍

𝑖=1

𝑛+

෍

𝑗=1

𝑛−

𝐼 𝑓 𝒙+ > 𝑓 𝒙+

𝒙+:input feature of intensifying window
𝒙−:input feature of normal window

𝑠 𝑥+, 𝑥−; 𝜃 =
1

1 + exp[−{𝑓 𝒙+; 𝜃 − 𝑓(𝒙−; 𝜃)}]

𝐼 𝑥 = ቊ
1 𝑥 = 𝑇𝑟𝑢𝑒
0 𝑥 = 𝐹𝑎𝑙𝑠𝑒

𝑛+:number of intensifying windows
𝑛−:number of normal windows

AUCsmooth =
1

𝑛+𝑛−
෍

𝑖=1

𝑛+

෍

𝑗=1

𝑛−

𝑠 𝒙+, 𝒙−; 𝜃

:conventional



Experimental setting

• Window length: 48-hour

• Intensifying threshold: 95 percentile pressure change in windows

• Training data: typhoons occurred in 1987-2012 year

• Test data: typhoons occurred in 2013-2017 year
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Result
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14-17 points
improved

8-9 point improved

NN-CE: neural network with cross-entropy loss

NN-AUC: neural network with AUC maximization (proposed)

Classification threshold is set to 10/50 percentile

Precision: Percentage of data that is predicted positive and that is actually positive

Recall: The percentage of real positives that were predicted positive



Evaluation (score distribution)
• Intensifying score predicted by NN-CE and NN-AUC

• Proposed method can provide high score for rapidly developing  
typhoons 22

NN-CE NN-AUC

rapidly developing 
typhoons



Summary
• Goal： improve the forecasting performance for intensifying 

typhoons with limited training data

• Existing methods: affected by  the majority of normal typhoons

• Proposed method: directly maximizing AUC by introducing 
smoothed variant of  with neural network

• Results:
• Proposed method improved the performance for forecasting 

intensifying typhoons

• However, recall is as low as 0.68

• Future works:
• Combine satellite images with SHIPS features
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Integrated Guidance

Collaboration with Japan Meteorological Agency
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Guidance: Bridging Numerical Model and Forecast

• Interpretation of Numerical Model
– Model values to weather properties.

e.g., What’s the weather like tomorrow? 
• Forecast Correction 

Adjusting model biases associated with…
– e.g., topography, cloud models, etc…

Numerical Model Guidance

Interpretation
&

Correction

Regression, NN,
Karman Filter etc..
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Pros and Cons among Numerical Models

Topography Spatial
Resolution

Temporal 
Resolution

Length of 
Forecast

LFM Detailed 2 km 1 Hours 9 Hours

MSM 5 km 3 Hours 39 Hours

GSM Coarse 20 km 6 Hours 132 Hours

Fine but Short vs. Coarse but Long (or Stable) 
26



Our Current Issue

• Officer has to integrate three forecasts based on past experience

MSM

GSM

LFM

LFM Guidance
Rain, Wind, 

Temperature…

MSM Guidance
Rain, Wind, 

Temperature…

GSM Guidance
Rain, Wind, 

Temperature…
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Aim of Our Study: Integrated Guidance

• Integrating models based on data in past

• Enabling Smart Forecast Operation !

MSM

GSM

LFM

LFM Guidance
Rain, Wind, 

Temperature…

MSM Guidance
Rain, Wind, 

Temperature…

GSM Guidance
Rain, Wind, 

Temperature…

Blending
Process

Improving 
Accuracy,

Resolution, 
& Handling
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Examining 
Nature of Data

Developing
Integration Model

Unifying 
Model Resolution

Current Projects

DNN GAN
Auto Encoder

Geostatistics

GSM to finer resolution using 
Deep Neural Network (JMA, 
2019)

Precipitation observation (left) and 
mixed model (right), (Kawanishi
and Hachiya). Visualization of converging wind 

associated with a stationary front29



Prediction

Simulation-Based Machine Learning

Inductive inference

Deductive inference

experience, 
observation

process model 

Data-driven Science (4th science)

Simulation Science (3rd science)

Deductive + Inductive = SBML
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