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Context and main goal

—— Climate simulation A
Climate simulation B "one model one vote" or "model democracy"
—— Climate simulation C Proposed weighted projections:
I Observations with uncertainty using advanced data science tools

Classic unweigted projections:

Climate index

/Compute weights (Wa, ws, WC)‘

using observations \ Use (wa, wg, wc) to weight climate projections\

Past Present Future

Time
» In the IPCC — ensemble of unweighted projections (" one
model one vote” or "model democracy”, [Knutti, 2010])
» |dea — learn weights from historical observations and

simulations, then propagate weights to climate projections
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Climate uncertainties revealed by CMIP
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Source: [Hawkins and Sutton, 2011]

Climate projections are sensitive to internal, model and
scenario uncertainties

Potential to narrow uncertainties, especially in regional
climate predictions [Hawkins and Sutton, 2009]
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New at IPCC: emergent constraints

Earth system sensitivity

Observable trend or variation

Source: [Eyring et al., 2019]

Pros:
» Easy to implement (projection using linear regression)
» Easy to understand (synthetic graphical representation)
» Do not weight climate simulations (not directly)

Cons:
» Causality not obvious (especially for large horizons)
> Low number of samples to fit the regression
» Questionable linear relationship and homoscedasticity
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Proposed approach: use advanced data science methods

Local linear regressions

Forecast (t)
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Three main steps:

» (a) Data assimilation (ensemble Kalman filter)
» (b) Data-driven forecasting (local linear regression)
» (c) Distance obs-forecasts (contextual model evidence)
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Ingredient 1: (a) EnKF + (c) contextual model evidence

Contextual model evidence in data assimilation (CME):

£(y(6)Mp) < exp (~diy(0) Tp(0)7M(B) (1)

with the innovation defined by its mean and covariance:

diy(t) = y(t) — Hx(fi)(t) and X (j(t) = HP(I.)(t)HT +R.

“based
Trajectory

X ;
observations

True/Correct model M,

Incorrect model M,,

Source: [Carrassi et al., 2017]
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Ingredient 2: (a) EnKF + (b) analog forecasting
Analog forecasting within data assimilation (AnDA):

x(t) = A(x(t — dt),n(t)) (2)
y(t) = H (x(t)) + (1) (3)

with A the analog forecasting operator [Lguensat et al., 2017].
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Source: [Tandeo et al., 2015]
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Ingredients 1 + 2: (a) EnKF + (b) AF 4 (c) CME

» Tested on a simplified GCM (SPEEDY, [Molteni, 2003]):

» 7 vertical levels, 96 x 48 horizontal grid
» simple physics (convection, clouds, radiation, boundary layer)

Temperature

Precipitation

Relative Humidity threshold in the Boundary Layer:

> RHBL = 0.9 — the "true” model
> RHBL = 0.8 — slightly imperfect model
» RHBL = 0.7 — imperfect model

Climatology and parameter sensitivity
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Ingredients 1 + 2: (a) EnKF + (b) AF 4 (c) CME

> Analog data assimilation details:

>
>
>
>

EnKF with 40 members with adaptive inflation [Miyoshi, 2011]
30-years catalogs for 3 parameterizations (RHBL 0.9, 0.8, 0.7)
3D local domains (3 vertical levels, 3 x 3 horizontal grid)

3 years of noisy observations from RHBL 0.9 (std = 0.7K)

Filtering results using AnDA with 2 catalogs (RHBL=0.9 & RHBL=0.7)
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Ingredients 1 + 2: (a) EnKF + (b) AF 4 (c) CME

Correct model selection probability for temperature observations
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» Results about model identification (in space):

» tropical-subtropical regions affected by model imperfections
» degree of imperfection is captured (RHBL 0.7 < 0.8)
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Ingredients 1 + 2: (a) EnKF + (b) AF 4 (c) CME

Correct model selection probability for temperature observations
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» Results about model identification (in space and time):
» sensibility to the RHBL parameter is evolving in time
» detection of model imperfection more important in summers

(i.e., when there is more convection observed)
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Ingredients 1 + 2: (a) EnKF + (b) AF 4 (c) CME

Conclusions:

» Combination of advanced data-science methods

» Able to compare short-term model dynamics

» Ruiz et al., will be submitted soon to the Journal of Climate
Pros:

» Local approach (sub-domain, given period, partial variables)

» Low-cost procedure (no need to run climate models)

» Capture spatiotemporal differences in model identifications
Cons:

P Need historical numerical simulations

» Need tuning (analogs, inflation, domain, observations)

» May seem complicated (but not so much!)
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Next step: application to climate simulations

—— Climate simulation A Classic unweigted projections:
"one model one vote" or "model democracy"

Proposed weighted projections:

Climate simulation B

—— Climate simulation C -_— , -
I Observations with uncertainty using advanced data science tools

Climate index

/Compute weights (Wa, ws, WC)\

using observations \ Use (wa, wg, wc) to weight climate projections

Past Present Future

Time
» Data — compare current observations to CMIP simulations
» Method — combine data-science methods (DA, AF, CME)

» Goal 1 — create weighted projections of climate metrics

» Goal 2 — reduce the uncertainty of climate projections
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Next step: application to climate simulations
Specificity of climate simulations [Knutti et al., 2019]:

» Interdependence — many CMIP models share ideas, parts of
code, or whole components (e.g., the sea ice model)

» Performance — some CMIP models are "good" at
representing a specific climate index, other models are not

» Simulations are sometimes biased and need standardization
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Source: [Cheng et al., 2013]

14/16



Next step: application to climate simulations

Local linear regressions Forecast (t)
il /) ®) ©
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Caveats and improvement of the methodology:
» (a) — deal with model interdependence (e.g., work with
clusters of models), deal with non-parametric distributions
» (b) — find differences in the short-term dynamics of climate
metrics (especially in the extremes), find relevant dt
» (c) — define more flexible metrics (e.g., optimal transport),
find relevant observations (long time series, knowing noise)
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Thank you for your attention! Any questions?

MAFALDA:

Multi-climate-model Analog Forecasting for
Attributing Likelihoods using Data Assimilation

French ANR program

JCJC “young researcher”

Under evaluation (2nd round)
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